Previous |  Up |  Next

Article

Title: State-based approach to the numerical solution of Dirichlet boundary optimal control problems for the Laplace equation (English)
Author: Langer, Ulrich
Author: Löscher, Richard
Author: Steinbach, Olaf
Author: Yang, Huidong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 6
Year: 2025
Pages: 797-824
Summary lang: English
.
Category: math
.
Summary: We investigate the Dirichlet boundary control of the Laplace equation, considering the control in $H^{1/2}(\partial \Omega )$, which is the natural space for Dirichlet data when the state belongs to $H^1(\Omega )$. The cost of the control is measured in the $H^{1/2}(\partial \Omega )$ norm that also plays the role of the regularization term. We discuss regularization and finite element error estimates enabling us to derive an optimal relation between the finite element mesh size $h$ and the regularization parameter $\varrho $, balancing the energy cost for the control and the accuracy of the approximation of the desired state. This relationship is also crucial in designing efficient solvers. We also discuss additional box constraints imposed on the control and the state. Our theoretical findings are complemented by numerical examples, including one example with box constraints. (English)
Keyword: Dirichlet boundary control problem
Keyword: Laplace equation
Keyword: finite element discretization
Keyword: error estimate
Keyword: solution method
MSC: 49J20
MSC: 49K20
MSC: 65K10
MSC: 65N22
MSC: 65N30
DOI: 10.21136/AM.2025.0166-25
.
Date available: 2025-12-20T05:06:34Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153224
.
Reference: [1] Agoshkov, V. I., Lebedev, V. I.: Poincaré-Steklov operators and methods for separation of a domain in variational problems.Vychisl. Protsessy Sist. 2 (1985), 173-227 Russian. Zbl 0596.35030, MR 0831493
Reference: [2] Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains.SIAM J. Control Optim. 53 (2015), 3620-3641. Zbl 1330.49037, MR 3432846, 10.1137/140994186
Reference: [3] Arada, N., Raymond, J.-P.: Dirichlet boundary control of semilinear parabolic equations. I. Problems with no state constraints.Appl. Math. Optim. 45 (2002), 125-143. Zbl 1005.49016, MR 1874072, 10.1007/s00245-001-0035-5
Reference: [4] Arioli, M., Loghin, D.: Discrete interpolation norms with applications.SIAM J. Numer. Anal. 47 (2009), 2924-2951. Zbl 1196.65080, MR 2551152, 10.1137/080729360
Reference: [5] Axelsson, O., Béreš, M., Blaheta, R.: Computational methods for boundary optimal control and identification problems.Math. Comput. Simul. 189 (2021), 276-290. Zbl 1540.65110, MR 4297868, 10.1016/j.matcom.2021.02.019
Reference: [6] Behrndt, J., Gesztesy, F., Mitrea, M.: Sharp Boundary Trace Theory and Schrödinger Operators on Bounded Lipschitz Domains.Memoirs of the American Mathematical Society 307. AMS, Providence (2025). Zbl 08028545, MR 4876779, 10.1090/memo/1550
Reference: [7] Behrndt, J., Micheler, T.: Elliptic differential operators on Lipschitz domains and abstract boundary value problems.J. Funct. Anal. 267 (2014), 3657-3709. Zbl 1300.35026, MR 3266243, 10.1016/j.jfa.2014.09.017
Reference: [8] Belgacem, F. Ben, Fekih, H. El, Metoui, H.: Singular perturbations for the Dirichlet boundary control of elliptic problems.M2AN, Math. Model. Numer. Anal. 37 (2003), 833-850. Zbl 1051.49012, MR 2020866, 10.1051/m2an:2003057
Reference: [9] Berggren, M.: Approximations of very weak solutions to boundary-value problems.SIAM J. Numer. Anal. 42 (2004), 860-877. Zbl 1159.65355, MR 2084239, 10.1137/S0036142903382048
Reference: [10] Braess, D., Peisker, P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning.IMA J. Numer. Anal. 6 (1986), 393-404. Zbl 0616.65108, MR 0968266, 10.1093/imanum/6.4.393
Reference: [11] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems.Math. Comput. 50 (1988), 1-17. Zbl 0643.65017, MR 0917816, 10.1090/S0025-5718-1988-0917816-8
Reference: [12] Brenner, S. C., Sung, L.-Y.: A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints.Results Appl. Math. 25 (2025), Article ID 100544, 13 pages. Zbl 08018243, MR 4854724, 10.1016/j.rinam.2025.100544
Reference: [13] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151. Zbl 0338.90047, MR 0365287, 10.1051/m2an/197408R201291
Reference: [14] Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints.SIAM J. Control Optim. 31 (1993), 993-1006. Zbl 0798.49020, MR 1227543, 10.1137/0331044
Reference: [15] Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations.SIAM J. Control Optim. 45 (2006), 1586-1611. Zbl 1123.65061, MR 2272157, 10.1137/050626600
Reference: [16] Chowdhury, S., Gudi, T., Nandakumaran, A. K.: Error bounds for a Dirichlet boundary control problem based on energy spaces.Math. Comput. 86 (2017), 1103-1126. Zbl 1359.65098, MR 3614013, 10.1090/mcom/3125
Reference: [17] Ciarlet, P. G., Raviart, P. A.: A mixed finite element method for the biharmonic equation.Mathematical Aspects of Finite Elements in Partial Differential Equations Academic Press, New York (1974), 125-145. Zbl 0337.65058, MR 0657977, 10.1016/B978-0-12-208350-1.50009-1
Reference: [18] Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains.SIAM J. Control Optim. 48 (2009), 2798-2819. Zbl 1203.49043, MR 2558321, 10.1137/080735369
Reference: [19] Fursikov, A. V., Gunzburger, M. D., Hou, L. S.: Boundary value problems and optimal boundary control for the Navier-Stokes system: The two-dimensional case.SIAM J. Control Optim. 36 (1998), 852-894. Zbl 0910.76011, MR 1613873, 10.1137/S0363012994273374
Reference: [20] Gangl, P., Löscher, R., Steinbach, O.: Regularization and finite element error estimates for elliptic distributed optimal control problems with energy regularization and state or control constraints.Comput. Math. Appl. 180 (2025), 242-260. Zbl 07979088, MR 4849816, 10.1016/j.camwa.2024.12.021
Reference: [21] Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem.SIAM Rev. 21 (1979), 167-212. Zbl 0427.65073, MR 0524511, 10.1137/1021028
Reference: [22] Gräser, C., Kornhuber, R.: Multigrid methods for obstacle problems.J. Comput. Math. 27 (2009), 1-44. Zbl 1199.65401, MR 2493556
Reference: [23] Gunzburger, M. D., Hou, L., Svobodny, T. P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction.SIAM J. Control Optim. 30 (1992), 167-181. Zbl 0756.49004, MR 1145711, 10.1137/0330011
Reference: [24] Hintermüller, M., Hinze, M.: Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment.SIAM J. Numer. Anal. 47 (2009), 1666-1683. Zbl 1191.49036, MR 2505869, 10.1137/080718735
Reference: [25] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method.SIAM J. Optim. 13 (2003), 865-888. Zbl 1080.90074, MR 1972219, 10.1137/S1052623401383558
Reference: [26] Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier-Stokes system.ZAMM, Z. Angew. Math. Mech. 84 (2004), 171-187. Zbl 1042.35047, MR 2038338, 10.1002/zamm.200310094
Reference: [27] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints.Mathematical Modelling: Theory and Applications 23. Springer, Dordrecht (2009). Zbl 1167.49001, MR 2516528, 10.1007/978-1-4020-8839-1
Reference: [28] John, L., Steinbach, O.: Schur complement preconditioners for the biharmonic Dirichlet boundary value problem.Berichte aus dem Institut für Numerische Mathematik. Bericht 2013/4 Technische Universität Graz, Graz (2013), 16 pages.
Reference: [29] Jung, M., Langer, U., Meyer, A., Queck, W., Schneider, M.: Multigrid preconditioners and their applications.Third Multigrid Seminar (Biesenthal, 1988) Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin (1989), 11-52. Zbl 0699.65076, MR 1004014
Reference: [30] Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in $L^2$ for a class of evolution equations.SIAM J. Control Optim. 46 (2007), 1726-1753. Zbl 1144.49003, MR 2361991, 10.1137/060670110
Reference: [31] Kunoth, A.: Adaptive wavelet schemes for an elliptic control problem with Dirichlet boundary control.Numer. Algorithms 39 (2005), 199-220. Zbl 1069.65069, MR 2137752, 10.1007/s11075-004-3630-0
Reference: [32] Langer, U.: Zur numerischen Lösung des ersten biharmonischen Randwertproblems.Numer. Math. 50 (1986), 291-310 German. Zbl 0597.65081, MR 0871231, 10.1007/BF01390707
Reference: [33] Langer, U., Löscher, R., Steinbach, O., Yang, H.: Mass-lumping discretization and solvers for distributed elliptic optimal control problems.Numer. Linear Algebra Appl. 31 (2024), Article ID e2564, 22 pages. Zbl 07953722, MR 4804322, 10.1002/nla.2564
Reference: [34] Langer, U., Löscher, R., Steinbach, O., Yang, H.: State-based nested iteration solution of optimal control problems with PDE constraints.Math. Control Relat. Fields 15 (2025), 1496-1537. Zbl 8109478, MR 4956351, 10.3934/mcrf.2025043
Reference: [35] Lasiecka, I., Malanowski, K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems.Control Cybern. 7 (1978), 21-36. Zbl 0459.49022, MR 0484630
Reference: [36] Liang, D., Gong, W., Xie, X.: A new error analysis for parabolic Dirichlet boundary control problems.ESAIM, Math. Model. Numer. Anal. 59 (2025), 749-787. Zbl 08028637, MR 4882763, 10.1051/m2an/2025006
Reference: [37] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations.Grundlehren der mathematischen Wissenschaften 170. Springer, Berlin (1971). Zbl 0203.09001, MR 0271512, 10.1007/978-3-642-65024-6
Reference: [38] Mardal, K.-A., Nielsen, B. F., Nordaas, M.: Robust preconditioners for PDE-constrained optimization with limited observations.BIT 57 (2017), 405-431. Zbl 1368.65099, MR 3651085, 10.1007/s10543-016-0635-8
Reference: [39] May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems.SIAM J. Control Optim. 51 (2013), 2585-2611. Zbl 1273.65087, MR 3070527, 10.1137/080735734
Reference: [40] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations.Cambridge University Press, Cambridge (2000). Zbl 0948.35001, MR 1742312
Reference: [41] McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular integral equation on an interval.Adv. Comput. Math. 11 (1999), 271-286. Zbl 0951.65145, MR 1732138, 10.1023/A:1018944530343
Reference: [42] Of, G., Phan, T. X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems.Numer. Math. 129 (2015), 723-748. Zbl 1311.49069, MR 3317816, 10.1007/s00211-014-0653-x
Reference: [43] Peisker, P.: On the numerical solution of the first biharmonic equation.RAIRO Modélisation Math. Anal. Numér. 22 (1988), 655-676. Zbl 0661.65112, MR 0974292, 10.1051/m2an/1988220406551
Reference: [44] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations.Springer Series in Computational Mathematics 23. Springer, Berlin (1994). Zbl 0803.65088, MR 1299729, 10.1007/978-3-540-85268-1
Reference: [45] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations.Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1999). Zbl 0931.65118, MR 1857663, 10.1093/oso/9780198501787.001.0001
Reference: [46] Ruge, J., Stüben, K.: Algebraic multigrid.Multigrid Methods Frontiers in Applied Mathematics. SIAM, Philadelphia (1987), 73-130. Zbl 0659.65094, MR 0972756, 10.1137/1.9781611971057.ch4
Reference: [47] Simoncini, V., Szyld, D. B.: Theory of inexact Krylov subspace methods and application to scientific computing.SIAM J. Sci. Comput. 25 (2003), 457-477. Zbl 1048.65032, MR 2058070, 10.1137/S1064827502406415
Reference: [48] Steinbach, O.: On the stability of the $L^2$ projection in fractional Sobolev spaces.Numer. Math. 88 (2001), 367-379. Zbl 0989.65124, MR 1826858, 10.1007/PL00005449
Reference: [49] Steinbach, O.: On a generalized $L^2$ projection and some related stability estimates in Sobolev spaces.Numer. Math. 90 (2002), 775-786. Zbl 0997.65120, MR 1888838, 10.1007/s002110100329
Reference: [50] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements.Springer, New York (2008). Zbl 1153.65302, MR 2361676, 10.1007/978-0-387-68805-3
Reference: [51] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications.Graduate Studies in Mathematics 112. AMS, Providence (2010). Zbl 1195.49001, MR 2583281, 10.1090/gsm/112
Reference: [52] Winkler, M.: Error estimates for variational normal and Dirichlet control problems with energy regularization.Numer. Math. 144 (2020), 413-445. Zbl 1433.49048, MR 4057429, 10.1007/s00211-019-01091-1
Reference: [53] Zhang, S., Xu, J.: Optimal solvers for fourth-order PDEs discretized on unstructured grids.SIAM J. Numer. Anal. 52 (2014), 282-307. Zbl 1293.65160, MR 3162408, 10.1137/120878148
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo