Previous |  Up |  Next

Article

Title: A stabilized formulation for the mortar method with non-linear contact constraints (English)
Author: Moretto, Daniele
Author: Franceschini, Andrea
Author: Ferronato, Massimiliano
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 6
Year: 2025
Pages: 825-849
Summary lang: English
.
Category: math
.
Summary: The mortar method is a powerful technique to enforce constraints between non-conforming discretizations by introducing a set of Lagrange multipliers on the connecting interface. Usually, the multipliers are not obtained explicitly because they can be eliminated with the aid of the so-called mortar interpolation operator. However, their explicit computation becomes essential when the contact constraint is governed by some non-linear law, and in this situation it is necessary to guarantee that discrete spaces of the primary variables and multipliers are inf-sup stable. In this work, we investigate the issue of inf-sup stability when using various families of piecewise linear and piecewise constant multipliers. The focus is on the role of the mesh resolution and the enforcement of boundary conditions, which are important factors in practical applications. Then, we develop a stabilized formulation for piecewise-constant multipliers inspired by the framework of minimal stabilization. The effectiveness of the proposed approach is demonstrated through numerical benchmarks and examples. (English)
Keyword: mortar method
Keyword: Lagrange multipliers
Keyword: inf-sup stable pairs
Keyword: stabilized formulation
MSC: 65N12
MSC: 65N30
DOI: 10.21136/AM.2025.0149-25
.
Date available: 2025-12-20T05:28:07Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153225
.
Reference: [1] Ao, J., Zhou, M., Zhang, B.: A dual mortar embedded mesh method for internal interface problems with strong discontinuities.Int. J. Numer. Methods Eng. 123 (2022), 5652-5681. Zbl 07769291, MR 4509716, 10.1002/nme.7082
Reference: [2] Babuška, I.: The finite element method with Lagrangian multipliers.Numer. Math. 20 (1973), 179-192. Zbl 0258.65108, MR 0359352, 10.1007/BF01436561
Reference: [3] Belgacem, F. Ben: The mortar finite element method with Lagrange multipliers.Numer. Math. 84 (1999), 173-197. Zbl 0944.65114, MR 1730018, 10.1007/s002110050468
Reference: [4] Bernardi, C., Maday, Y., Patera, A. T.: Domain decomposition by the mortar element method.Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters Kluwer Academic Publishers, Dordrecht (1993), 269-286. Zbl 0799.65124, MR 1222428, 10.1007/978-94-011-1810-1_17
Reference: [5] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications.Springer Series in Computational Mathematics 44. Springer, Berlin (2013). Zbl 1277.65092, MR 3097958, 10.1007/978-3-642-36519-5
Reference: [6] Burman, E.: Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries.Numer. Methods Partial Differ. Equations 30 (2014), 567-592. Zbl 1288.65153, MR 3163976, 10.1002/num.21829
Reference: [7] Chapelle, D., Bathe, K.-J.: The inf-sup test.Comput. Struct. 47 (1993), 537-545. Zbl 0780.73074, MR 1224095, 10.1016/0045-7949(93)90340-J
Reference: [8] El-Abbasi, N., Bathe, K.-J.: Stability and patch test performance of contact discretizations and a new solution algorithm.Comput. Struct. 79 (2001), 1473-1486. 10.1016/S0045-7949(01)00048-7
Reference: [9] Elman, H. C., Silvester, D. J., Wathen, A. J.: Iterative Methods for Problems in Computational Fluid Dynamics.Report No. 96/19. Oxford University Computing Laboratory, Oxford (1996).
Reference: [10] Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). Zbl 1304.76002, MR 3235759, 10.1093/acprof:oso/9780199678792.001.0001
Reference: [11] Farah, P., Popp, A., Wall, W. A.: Segment-based vs. element-based integration for mortar methods in computational contact mechanics.Comput. Mech. 55 (2015), 209-228. Zbl 1311.74120, MR 3295001, 10.1007/s00466-014-1093-2
Reference: [12] Franceschini, A., Castelletto, N., White, J. A., Tchelepi, H. A.: Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures.Comput. Methods Appl. Mech. Eng. 368 (2020), Article ID 113161, 32 pages. Zbl 1506.74400, MR 4106669, 10.1016/j.cma.2020.113161
Reference: [13] Franceschini, A., Castelletto, N., White, J. A., Tchelepi, H. A.: Scalable preconditioning for the stabilized contact mechanics problem.J. Comput. Phys. 459 (2022), Article ID 111150, 32 pages. Zbl 1560.74066, MR 4401969, 10.1016/j.jcp.2022.111150
Reference: [14] Franceschini, A., Ferronato, M., Janna, C., Teatini, P.: A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics.J. Comput. Phys. 314 (2016), 503-521. Zbl 1349.74321, MR 3484946, 10.1016/j.jcp.2016.03.032
Reference: [15] Gustafsson, T., RÃ¥back, P., Videman, J.: Mortaring for linear elasticity using mixed and stabilized finite elements.Comput. Methods Appl. Mech. Eng. 404 (2023), Article ID 115796, 13 pages. Zbl 1550.74366, MR 4520467, 10.1016/j.cma.2022.115796
Reference: [16] Hauret, P., Tallec, P. Le: A discontinuous stabilized mortar method for general 3D elastic problems.Comput. Methods Appl. Mech. Eng. 196 (2007), 4881-4900. Zbl 1173.74424, MR 2355734, 10.1016/j.cma.2007.06.014
Reference: [17] Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction.Comput. Methods Appl. Mech. Eng. 195 (2006), 4323-4333. Zbl 1123.74045, MR 2229843, 10.1016/j.cma.2005.09.008
Reference: [18] Lamichhane, B. P.: Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications.Universität Stuttgart, Stuttgart (2006). Zbl 1196.65012
Reference: [19] Moretto, D., Franceschini, A., Ferronato, M.: A novel mortar method integration using radial basis functions.Comput. Math. Appl. 198 (2025), 38-58. MR 4945430, 10.1016/j.camwa.2025.08.008
Reference: [20] Pitkäranta, J.: Local stability conditions for the Babuška method of Lagrange multipliers.Math. Comput. 35 (1980), 1113-1129. Zbl 0473.65072, MR 0583490, 10.1090/S0025-5718-1980-0583490-9
Reference: [21] Popp, A.: Mortar Methods for Computational Contact Mechanics and General Interface Problems: Ph.D. Thesis.Technische Universität München, München (2012).
Reference: [22] A. Popp, M. Gitterle, M., W. Gee, W. A. Wall: A dual mortar approach for 3D finite deformation contact with consistent linearization.Int. J. Numer. Methods Eng. 83 (2010), 1428-1465. Zbl 1202.74183, MR 2722505, 10.1002/nme.2866
Reference: [23] Popp, A., Wall, W. A.: Dual mortar methods for computational contact mechanics: Overview and recent developments.GAMM Mitt. 37 (2014), 66-84. Zbl 1308.74119, MR 3234156, 10.1002/gamm.201410004
Reference: [24] Popp, A., Wohlmuth, B. I., Gee, M. W., Wall, W. A.: Dual quadratic mortar finite element methods for 3D finite deformation contact.SIAM J. Sci. Comput. 34 (2012), B421--B446. Zbl 1250.74020, MR 2970413, 10.1137/110848190
Reference: [25] Puso, M. A., Laursen, T. A.: Mesh tying on curved interfaces in 3D.Eng. Comput. (Bradf.) 20 (2003), 305-319. Zbl 1045.65107, 10.1108/02644400310467225
Reference: [26] Puso, M. A., Laursen, T. A.: A mortar segment-to-segment frictional contact method for large deformations.Comput. Methods Appl. Mech. Eng. 193 (2004), 4891-4913. Zbl 1112.74535, MR 2097761, 10.1016/j.cma.2004.06.001
Reference: [27] Puso, M. A., Solberg, J. M.: A dual pass mortar approach for unbiased constraints and self-contact.Comput. Methods Appl. Mech. Eng. 367 (2020), Article ID 113092, 32 pages. Zbl 1442.74142, MR 4099873, 10.1016/j.cma.2020.113092
Reference: [28] Sanders, J., Puso, M. A.: An embedded mesh method for treating overlapping finite element meshes.Int. J. Numer. Methods Eng. 91 (2012), 289-305. Zbl 1246.74064, MR 2947862, 10.1002/nme.4265
Reference: [29] Tur, M., Fuenmayor, F. J., Wriggers, P.: A mortar-based frictional contact formulation for large deformations using Lagrange multipliers.Comput. Methods Appl. Mech. Eng. 198 (2009), 2860-2873. Zbl 1229.74141, MR 2567849, 10.1016/j.cma.2009.04.007
Reference: [30] Wohlmuth, B. I.: Discretization techniques based on domain decomposition.Discretization Methods and Iterative Solvers Based on Domain Decomposition Lecture Notes in Computational Science and Engineering 17. Springer, Berlin (2001), 1-84. 10.1007/978-3-642-56767-4_1
Reference: [31] Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems.Acta Numerica 20 (2011), 569-734. Zbl 1432.74176, MR 2805157, 10.1017/S0962492911000079
Reference: [32] Wriggers, P.: Computational contact mechanics.Comput. Mech. 32 (2003), 141. 10.1007/s00466-003-0472-x
Reference: [33] Yang, B., Laursen, T. A., Meng, X.: Two dimensional mortar contact methods for large deformation frictional sliding.Int. J. Numer. Methods Eng. 62 (2005), 1183-1225. Zbl 1161.74497, MR 2120292, 10.1002/nme.1222
Reference: [34] Zhou, M., Zhang, B., Chen, T., Peng, C., Fang, H.: A three-field dual mortar method for elastic problems with nonconforming mesh.Comput. Methods Appl. Mech. Eng. 362 (2020), Article ID 112870, 24 pages. Zbl 1439.74482, MR 4059410, 10.1016/j.cma.2020.112870
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo