[1] Birkhoff, G.:
Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967.
Zbl 0537.06001
[2] Calvo, T., Baets, T. B. De, Fodor, J.:
The functional equations of Frank and Alsina for uninorms and nullnorm. Fuzzy Sets Syst. 120 (2001), 385-394.
DOI
[3] Castro, J. L.:
Fuzzy logic controllers are universal approximators. IEEE Trans. Systems Man Cybernet. 25 (1995), 4, 629-635.
DOI
[4] Çaylı, G. D., Karaçal, F.:
Idempotent nullnorms on bounded lattices. Inform. Sci. 425 (2018), 154-163.
DOI
[5] Çaylı, G. D., Karaçal, F.: Some remarks on idempotent nullnorms on bounded lattices. In: Aggregation Functions in Theory and in Practice, Springer International Publishing 2018, pp. 31-39.
[6] Çaylı, G. D., Karaçal, F.: A survey on nullnorms on bounded lattices. In: 10th Conference of the European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT) / 16th International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets (IWIFSGN) 640, Warszawa 2017, pp. 431-442.
[7] Çaylı, G. D.:
Nullnorms on bounded lattices derived from t-norms and t-conorms. Inform. Sci. 512 (2020), 1134-1154.
DOI
[8] Çaylı, G. D.:
Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746.
DOI
[9] Çaylı, G. D.:
Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131.
DOI
[10] Çaylı, G. D.:
Construction of nullnorms on some special classes of bounded lattices. Int. J. Approx. Reason. 134 (2021), 111-128.
DOI
[11] Dan, Y., Hu, B. Q., Baets, B. De:
Nullnorms on bounded lattices constructed by means of closure and interior operators. Fuzzy Sets Syst. 430 (2022), 142-156.
DOI
[12] Drygaś, P.: Isotonic operations with zero element in bounded lattices. In: Soft Computing Foundations and Theoretical Aspect, EXIT Warszawa 2004, pp. 181-190.
[13] Ertuğrul, Ü.:
Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109.
DOI
[14] Ertuğrul, Ü., Yeşilyurt, M.:
Ordinal sums of triangular norms on bounded lattices. Inform. Sci. 517 (2020), 198-216.
DOI
[15] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press 2009.
Zbl 1206.68299
[16] Karaçal, F., İnce, M. A., Mesiar, R.:
Nullnorms on bounded lattices. Inform. Sci. 325 (2015), 227-236.
DOI
[17] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[18] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. New Jersey, Prentice Hall 4 (1995), 1-12.
[19] Mas, M., Mayor, G., Torrens, J.:
t-operators. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 7 (1999), 31-50.
DOI |
Zbl 1005.03047
[20] Mayor, G., Torrens, J.:
On a class of operators for expert systems. Int. J. Intell. Systems 8 (1993), 771-778.
DOI |
Zbl 0785.68087
[21] Sun, X., Liu, H.:
Representation of nullnorms on bounded lattices. Inform. Sci. 539 (2020), 269-276.
DOI
[22] Xie, J., Ji, W.:
New Constructions of nullnorms on bounded lattices. J. Appl. Math. Phys. 9 ( 2021), 1-10.
DOI