[1] Aşcı, E., Mesiar, R.:
On the construction of uninorms on bounded lattices. Fuzzy Sets Systems 408 (2021), 65-85.
DOI
[2] Birkhoff, G.:
Lattice Theory. Amer. Math. Soc., Rhode Island, 1967.
Zbl 0537.06001
[3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, September 11-13, Subotica, Serbia, 2014, 61-66.
[4] Çaylı, G. D., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231.
DOI
[5] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.:
Some further construction methods for uninorms on bounded lattices. Int. J. General Systems 52 (2023), 4, 414-442.
DOI
[6] Çaylı, G. D.:
New construction approaches of uninorms on bounded lattices. Int. J. General Systems 50 (2021), 139-158.
DOI
[7] Çaylı, G. D.:
An alternative construction of uninorms on bounded lattices. Int. J. General Systems 52 (2023), 5, 574-596.
DOI
[8] Çaylı, G. D.:
Constructing uninorms on bounded lattices through closure and interior operators. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 32 (2024), 1, 109-129.
DOI
[9] Everett, C. J.:
Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525.
DOI
[10] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.:
Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inform. Sci. 181 (2011), 23-43.
DOI
[11] Hájek, P.:
Combining Functions for Certainty Degrees in Consulting Systems. Int. J. Man-Machine Studies 22 (1985), 1, 59-76.
DOI
[12] Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton 1992.
[13] Hua, X. J., Zhang, H. P., Ouyang, Y.:
Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382.
DOI
[14] He, P., Wang, X. P.:
Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.
DOI
[15] Hua, X. J., Ji, W.:
Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Systems 427 (2022), 109-131.
DOI
[16] Ji, W.:
Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Systems 403 (2021), 38-55.
DOI
[17] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43.
DOI
[18] Karaçal, F., Ertuğrul, Ü., Mesiar, R.:
Characterization of uninorms on bounded lattices. Fuzzy Sets Systems 308 (2017), 54-71.
DOI
[19] Klement, E. P., Mesiar, R., Pap, E.:
A Universal Integral As Common Frame for Choquet and Sugeno Integral. IEEE Trans. Fuzzy Systems 18 (2010), 178-187.
DOI
[20] Menger, K.:
Statistical metrics. In: Proc. National Academy of Sciences of the United States of America 8 (1942), 535-537.
DOI |
Zbl 0063.03886
[21] Metcalfe, G., Montagna, F.:
Substructural Fuzzy Logics. J. Symbolic Logic 72 (2007), 3, 834-864.
DOI
[22] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Systems 395 (2020), 93-106.
DOI
[23] Palmeira, E. S., Bedregal, B. C.:
Extension of fuzzy logic operators defined on bounded lattices via retractions. Comput. Math. Appl. 63 (2012), 1026-1038.
DOI
[24] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 157 (2006), 1403-1416.
DOI |
Zbl 1099.06004
[25] Takács, M.:
Uninorm-Based Models for FLC Systems. J. Intell. Fuzzy Systems 19 (2008), 1, 65-73.
DOI
[26] Xiu, Z. Y., Zheng, X.:
New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Systems 465 (2023), 108535.
DOI
[27] Xiu, Z. Y., Zheng, X.:
A new approach to construct uninorms via uninorms on bounded lattices. Kybernetika 60 (2024), 2, 125-149.
DOI
[28] Yager, R. R., Rybalov, A.:
Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120.
DOI |
Zbl 0871.04007
[29] Zhao, B., Wu, T.:
Some further results about uninorms on bounded lattices. Int. J. Approx. Reasoning 130 (2021), 22-49.
DOI
[30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De:
A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121.
DOI