[1] Acquistapace, P.: 
On BMO regularity for linear elliptic system. Ann. Mat. Pura Appl. 161 (1992), 231–269. 
MR 1174819[2] Agmon, S., Douglis, A., Nirenberg, L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623–727. 
MR 0125307 | 
Zbl 0093.10401[3] Agmon, S., Douglis, A., Nirenberg, L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35–72. 
MR 0162050 | 
Zbl 0123.28706[4] Bramanti, M., Cerutti, M.C.: 
$W^{1,2}_p$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial Differential Equations 18 (1993), 1735–1763. 
MR 1239929 | 
Zbl 0816.35045[5] Bureau, F.: 
Divergent integrals and partial differential equations. Comm. Pure Appl. Math. 8 (1955), 143–202. 
MR 0068085 | 
Zbl 0064.09204[6] Calderón, A.P.: 
Integrales singulares y sus aplicaciones aecuaciones diferenciales hyperbolicas. Cursos y seminarios de Matematicas, 3, Univ. de Buenos Aires, 1960. 
MR 0123834[7] Calderón, A.P.: 
Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099. 
MR 0177312[8] Calderón, A.P.: 
Singular integrals. Bull. Amer. Math. Soc. 72 (1966), 427–465. 
MR 0209918[9] Calderón, A.P., Zygmund, A.: 
On the existence of certain singular integrals. Acta Math. 88 (1952), 85–139. 
MR 0052553[10] Calderón, A.P., Zygmund, A.: 
Singular integral operators and differential equations. Amer. J. Math. 79 (1957), 901–921. 
MR 0100768[11] Calderón, A.P., Zygmund, A.: 
On singular integrals with variable kernels. Applicable Analysis 7 (1978), 221–238. 
MR 0511145[12] Campanato, S.: 
Proprietà di hölderianità di alcune classi difunzioni. Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188. 
MR 0156188[13] Campanato, S.: 
Equazioni ellittiche del secondo ordine e spazi L $^{2,\lambda }$. Ann. Mat. Pura Appl. 69 (1965), 321–382. 
MR 0192168[14] Campanato, S.: 
Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale. Ann. Scuola Norm. Sup. Pisa 21 (1967), 701–707. 
MR 0224996 | 
Zbl 0157.42202[15] Campanato, S.: 
Sistemi ellittici in forma divergenza. Regolarità all’interno. Quaderni Scuola Normale Superiore Pisa, 1980. 
MR 0668196 | 
Zbl 0453.35026[16] Campanato, S.: Sistemi ellittici lineari e non lineari. Quaderno S.I.S.S.A., a.a. 1985–86.
[16$^{\prime }$] Campanato, S.: 
Su un teorema di interpolazione di G.Stampacchia. Ann. Scuola Norm. Sup. Pisa 20 (1966), 649–652. 
MR 0209864 | 
Zbl 0195.41102[17] Campanato, S., Stampacchia, G.: 
Sulle maggiorazioni in $L^p$ nella teoria delle equazioni ellittiche. Boll. Un. Mat. Ital. 20 (1965), 393–399. 
MR 0192169[18] Chiarenza, F., Frasca, M., Longo, P.: 
Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40 (1991), 149–168. 
MR 1191890[19] Chiarenza, F., Frasca, M., Longo, P.: 
$W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336 (1993), 841–853. 
MR 1088476 | 
Zbl 0818.35023[20] Chiarenza, F., Franciosi, M., Frasca, M.: 
$L^p$ estimates for linear elliptic systems with discontinuous coefficients. Rend. Acc. Lincei (9) 5 (1994), 27–32. 
MR 1273890[21] Chicco, M.: 
Solvability of the Dirichlet problem in $H^{2,p} (\Omega )$ for a class of linear second order elliptic partial differential equations. Boll. Un. Mat. Ital. (4) 4 (1971), 374–387. 
MR 0298209[22] Coifman, R., Rochberg, R., Weiss, G.: 
Factorization theorems for Hardy spaces in several variables. Ann. of Math. 103 (1976), 611–635. 
MR 0412721 | 
Zbl 0326.32011[23] Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: 
Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72 (1993), 247–286. 
MR 1225511 | 
Zbl 0864.42009[24] Fazio, G. Di: 
$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients. preprint. 
Zbl 1007.65053[25] Fazio, G. Di: 
$L^p$ estimates for divergence form elliptic systems with discontinuous coefficients. preprint. 
Zbl 1007.65053[26] Fazio, G. Di, Ragusa, M.A.: 
Interior estimates in Morrey spaces for strong solutions to non divergence form equations with discontinuous coefficients. J.Funct. Anal. 112 (1993), 241–256. 
MR 1213138[27] Douglis, A., Nirenberg, L.: 
Interior estimates for elliptic system of partial differential equations. Comm. Pure Appl. Math. 8 (1955), 503–538. 
MR 0075417[28] Fabes, E.: 
Singular integrals and partial differential equations of parabolic type. Studia Math. 28 (1966), 81–131. 
MR 0213744 | 
Zbl 0144.35002[29] Fabes, E., Rivière, N.: 
Singular integrals with mixed homogeneity. Studia Math. 27 (1966), 19–38. 
MR 0209787[30] Fefferman, C., Stein, E.: 
$H^p$ spaces of several variables. Acta Math. 129 (1972), 137–193. 
MR 0447953[31] Giaquinta, M.: 
Multiple integrals in the calculus of variations and nonlinear elliptic system. Ann. of Math. Stud. 105 (1983), Princeton Univ. Press. 
MR 0717034[32] Gilbarg, D., Trudinger, N.: 
Elliptic partial differential equations of second order. $2^{\text{nd}}$ edition, Springer-Verlag, 1983. 
MR 0737190 | 
Zbl 0562.35001[33] Greco, D.: 
Nuove formule integrali di tipo ellittico ed applicazioni alla teoria del potenziale. Ricerche Mat. 5 (1956), 126–149. 
MR 0082030[35] Hellwig, G.: 
Partial Differential Equations. Blaisdell Publishing Co., 1964. 
Zbl 0133.35701[36] Janson, S.: 
On functions with conditions on the mean oscillation. Ark. Mat. 14 (1976), 189–196. 
MR 0438030 | 
Zbl 0341.43005[37] Janson, S.: 
Mean oscillation and commutators of singular integrals operators. Ark. Mat. 16 (1978), 263–270. 
MR 0524754[38] John, F.: 
The fundamental solution of linear elliptic differential equations with analytic coefficients. Comm. Pure Appl. Math. 3 (1950), 273–304. 
MR 0042030 | 
Zbl 0041.06203[39] John, F., Nirenberg, L.: 
On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426. 
MR 0131498 | 
Zbl 0102.04302[40] Koshelev, A.I.: 
On boundedness in $L^p$ of solutions of elliptic differential equations. Mat. Sb. 38 (1956), 359–372. 
MR 0078563[41] Meyers, N.: 
An $L^p$ estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17 (1963), 189–206. 
MR 0159110[42] Meyers, N.: 
Mean oscillation over cubes and Hölder continuity. Proc. Amer. Math. Soc. 15 (1964), 717–721. 
MR 0168712 | 
Zbl 0129.04002[43] Miranda, C.: 
Partial differential equations of elliptic type. $2^{\text{nd}}$ ed., Springer-Verlag, 1970. 
MR 0284700 | 
Zbl 0198.14101[46] Neri, U.: 
Fractional integration on the space $H^1$ and its dual. Studia Math. 53 (1975), 175–189. 
MR 0388074[47] Neri, U.: 
Some properties of bounded mean oscillation. Studia Math. 41 (1977), 63–75. 
MR 0445210[48] Palagachev, D.K.: 
Quasilinear elliptic equations with $\text{\rm {VMO}}$ coefficients. preprint. 
MR 1308019[49] Sarason, D.: 
Functions of vanishing mean oscillation. Trans. Amer.Math. Soc. 207 (1975), 391–405. 
MR 0377518 | 
Zbl 0319.42006[50] Simader, C.: 
On Dirichlet’s boundary value problem. Lect. Notes Mathematics, 268, Springer-Verlag, 1972. 
MR 0473503 | 
Zbl 0242.35027[51] Solonnikov, V.A.: 
On Green’s matrices for elliptic boundary value problems I. Proc. Steklov Inst. Math. 110 (1970), 123–170. 
MR 0289935[52] Spanne, S.: 
Some function spaces defined using the mean oscillation over cubes. Ann. Scuola Norm. Sup. Pisa 19 (1965), 593–608. 
MR 0190729 | 
Zbl 0199.44303[53] Stampacchia, G.: 
$\mathscr{L}^{p,\lambda}$ spaces and interpolation. Comm. Pure Appl. Math. 17 (1964), 293–306. 
MR 0178350[53$^{\prime }$] Stampacchia, G.: 
The spaces $\mathscr{L}^{p,\lambda}$, $\mathscr{N}^{p,\lambda}$ and interpolation. Ann. Scuola Norm. Sup. Pisa 19 (1965), 443–462. 
MR 0199697[54] Stein, E.: 
Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, 1993. 
MR 1232192 | 
Zbl 0821.42001[55] Uchiyama, A.: 
On the compactness of operators of Hankel type. Tôhoku Math. J. 30 (1978), 163–171. 
MR 0467384 | 
Zbl 0384.47023[56] Vitanza, C.: 
$W^{2,p}$ regularity for a class of elliptic second order equations with discontinuous coefficients. Matematiche 47 (1992), 177–186. 
MR 1229461[57] Vitanza, C.: 
A new contribution to the $W^{2,p}$ regularity for a class of elliptic second order equations with discontinuous coefficients. to appear in Matematiche. 
MR 1320669