[Ad] Adams D.R. : 
A sharp inequality of J. Moser for higher order derivatives. Annals of Math. 128 (1988), 385–398. 
MR 0960950 | 
Zbl 0672.31008[Av] Avantaggiati A. : 
On compact imbedding theorems in weighted Sobolev spaces. Czechoslovak Math. J. 29 (104) (1979), 635–648. 
MR 0548224[B] Boyd D. W. : 
Indices of function spaces and their relationship to interpolation. Canad. J. Math. 21 (1969), 1245–1254. 
MR 0412788 | 
Zbl 0184.34802[BW] Brézis H., Wainger S. : 
A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Diff. Eq. 5 (1980), 773–789. 
MR 0579997 | 
Zbl 0437.35071[Ca] Calderón A. P. : 
Spaces between $L^1$ and $L^\infty $ and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299. 
MR 0203444[CPSS] Carro M. J., Pick L., Soria J., Stepanov V. D. : 
On embeddings between classical Lorentz spaces. Centre de Recerca Barcelona, preprint no. 385 (1998), 1–36. 
MR 1841071[Ci] Cianchi A. : 
A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39–65. 
MR 1406683 | 
Zbl 0860.46022[CPi] Cianchi A., Pick L. : 
Sobolev embeddings into . BMO, VMO, and $L_\infty $. Ark. Mat. 36 (1998), 317–340. 
MR 1650446 | 
Zbl 1035.46502[CPu] Cwikel M., Pustylnik E. : 
Sobolev type embeddings in the limiting case. To appear in J. Fourier Anal. Appl. 
MR 1658620 | 
Zbl 0930.46027[EGO] Edmunds D. E., Gurka P., Opic B. : 
Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43. 
MR 1336431 | 
Zbl 0826.47021[EKP] Edmunds D. E., Kerman R. A., Pick L. : 
Optimal Sobolev embeddings involving rearrangement-invariant quasinorms. To appear. 
MR 1740655[EOP] Evans W. D., Opic B., Pick L. : 
Interpolation of operators on scales of generalized Lorentz-Zygmund spaces. Math. Nachr. 182 (1996), 127–181. 
MR 1419893 | 
Zbl 0865.46016[F] Fiorenza A. : 
A summability condition on the gradient ensuring $BMO$. To appear in Rev. Mat. Univ. Complut. Madrid. 
Zbl 0926.46028[GHS] dman M. L. Gol,’ Heinig H. P., Stepanov V. D. : 
On the principle of duality in Lorentz spaces. Canad. J. Math. 48 (1996), 959–979. 
MR 1414066[H] Hansson K. : 
Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45 (1979), 77–102. 
MR 0567435 | 
Zbl 0437.31009[HMT] Hempel J. A., Morris G. R., Trudinger N. S. : 
On the sharpness of a limiting case of the Sobolev imbedding theorem. Bull. Australian Math. Soc. 3 (1970), 369–373. 
MR 0280998 | 
Zbl 0205.12801[JN] John F., Nirenberg L. : 
On functions of bounded mean oscillation.  Comm. Pure Appl. Math. 14 (1961), 415–426. 
MR 0131498 | 
Zbl 0102.04302[Ka] Kabaila V. P. : 
On embeddings of the space $L_p(\mu )$ into $L_r(\nu )$. (Russian). Lit. Mat. Sb. 21 (1981), 143–148. 
MR 0641511[Ke1] Kerman R. A. : 
Function spaces continuously paired by operators of convolution-type. Canad. Math. Bull. 22 (1979), 499–507. 
MR 0563765 | 
Zbl 0428.46024[Ke2] Kerman R. A. : 
An integral extrapolation theorem with applications. Studia Math. 76 (1983), 183–195. 
MR 0729102 | 
Zbl 0479.46015[M] Maz’ya V. G. : 
Sobolev Spaces. Springer-Verlag, Berlin 1985. 
MR 0817985[O] Neil R. O,’ : 
Convolution operators and $L_{(p,q)}$ spaces. Duke Math. J. 30 (1963), 129–142. 
MR 0146673[OK] Opic B., Kufner A. : 
Hardy-type inequalities. Pitman Research Notes in Mathematics, Longman Sci & Tech. Harlow 1990. 
MR 1069756 | 
Zbl 0698.26007[Pe] Peetre J. : 
Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier 16 (1966), 279–317. 
MR 0221282 | 
Zbl 0151.17903[Po] Pokhozhaev S. I. : 
On eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. (Russian). Dokl. Akad. Nauk SSSR 165 (1965), 36–39. 
MR 0192184[Pu] Preprint E. Pustylnik : 
Optimal interpolation in spaces of Lorentz-Zygmund type.  1998, ,. 
MR 1749309[Sa] Sawyer E. T. : 
Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145–158. 
MR 1052631 | 
Zbl 0705.42014[Sh] Sharpley R. : 
Counterexamples for classical operators in Lorentz-Zygmund spaces. Studia Math. 68 (1980), 141–158. 
MR 0599143[Sob] Sobolev S. L. : 
Applications of Functional Analysis in Mathematical Physics. Transl. of Mathem. Monographs, American Math. Soc., Providence, RI 7 (1963). 
MR 0165337 | 
Zbl 0123.09003[St] Stepanov V. D. : 
The weighted Hardy inequality for nonincreasing functions. Trans. Amer. Math. Soc. 338 (1993), 173–186. 
MR 1097171[Str] Strichartz R. S. : 
A note on Trudinger’s extension of Sobolev’s inequality. Indiana Univ. Math. J. 21 (1972), 841–842. 
MR 0293389[Ta] Talenti G. : 
Inequalities in rearrangement-invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5. M. Krbec, A. Kufner, B. Opic and J. Rákosník (eds.), Prometheus Publishing House, Prague 1995, 177–230. 
MR 1322313[Tr] Trudinger N. S. : 
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–483. 
MR 0216286 | 
Zbl 0163.36402[W] Wainger S. : 
Special trigonometric series in $k$-dimension. Mem. Amer. Math. Soc. 59 (1965), 1–102. 
MR 0182838[Y] operators V. I. Yudovich : Some estimates connected with integral, 1961, with solutions of elliptic equations. Soviet Math. Doklady 2 (,) 749, 746–,.
[Z] Ziemer W. P. : 
Weakly differentiable functions. Graduate texts in Math. 120, Springer, New York 1989. 
MR 1014685 | 
Zbl 0692.46022[Zy] Zygmund A. : Trigonometric Series. Cambridge University Press, Cambridge 1957.