Previous |  Up |  Next

Article

MSC: 46E35
Keywords:
Lipschitz function; Poicaré inequality; upper gradient; Sobolev space
Summary:
We describe an approach to establish a theory of metric Sobolev spaces based on Lipschitz functions and their pointwise Lipschitz constants and the Poincaré inequality.
References:
[1] Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. MR 1708448 | Zbl 0942.58018
[2] Franchi B., Hajłasz P., Koskela P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. MR 1738070 | Zbl 0938.46037
[3] Hajłasz P., Koskela P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris, Sér. I Math. 320 (1995), 1211–1215. Zbl 0837.46024, MR 96f:46062. MR 1336257
[4] Hajłasz P., Koskela P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). Zbl 0954.46022, MR 2000j:46063. MR 1683160
[5] Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. MR 1654771 | Zbl 0915.30018
[6] Heinonen J., Koskela P., Shanmuganlingam N., Tyson J.: Sobolev spaces on metric measure spaces: an approach based on upper gradients. (in preparation).
[7] Keith S.: A differentiable structure for metric measure spaces. Advances Math. (to appear). MR 2703118 | Zbl 1077.46027
[8] Keith S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. (to appear). MR 2013501 | Zbl 1037.31009
[9] Keith S., Rajala K.: A remark on Poincaré inequalities on metric measure spaces. Preprint. MR 2098359 | Zbl 1070.31003
[10] Koskela P., Onninen J.: Sharp inequalities via truncation. J. Math. Anal. Appl. 278 (2003), 324–334. MR 1974010 | Zbl 1019.26003
[11] Liu Y., Lu G., Wheeden R. L.: Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces. Math. Ann. 323 (2002), 157–174. Zbl 1007.46034, MR 2003f:46048. MR 1906913 | Zbl 1007.46034
[12] Lu G., Wheeden R. L.: High order representation formulas and embedding theorems on stratified groups and generalizations. Studia Math. 142 (2000), 101–133. Zbl 0974.46039, MR 2001k:46055. MR 1792599 | Zbl 0974.46039
[13] Malý J., Pick L.: The sharp Riesz potential estimates in metric spaces. Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. MR 1909289 | Zbl 1038.46027
[14] Rissanen J.: Wavelets on self-similar sets and the structure of the spaces $M^{1,p}(E,\mu )$. Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002). Zbl 0993.42016, MR 2002k:42081. MR 1880640
[15] Semmes S.: Some novel types of fractal geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.Zbl 0970.28001, MR 2002h:53073. MR 1815356 | Zbl 0970.28001
[16] Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. MR 1809341 | Zbl 0974.46038
Partner of
EuDML logo