[1] Benhammouda, B., Vazquez-Leal, H.: 
A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations.  SpringerPlus, (2016), 5, 1723. DOI 10.1186/s40064-016-3386-8. 
DOI 10.1186/s40064-016-3386-8[2] Khan, Y., Svoboda, Z., Šmarda, Z.: 
Solving certain classes of Lane-Emden type equations using the differential transformation method.  Advances in Difference Equations, 174, (2012). 
MR 3016691[3] Odibat, Z. M., Bertelle, C., Aziz-Alaouic, M. A., Duchampd, H. E. G.: 
A multi-step differential transform method and application to non-chaotic or chaotic systems.  Computers and Mathematics with Applications, 59, (2010), pp. 1462-1472. 
DOI 10.1016/j.camwa.2009.11.005 | 
MR 2591936[4] Odibat, Z. M., Kumar, S., Shawagfeh, N., Alsaedi, A., Hayat, T.: 
A study on the convergence conditions of generalized differential transform method.  Mathematical Methods in the Applied Sciences, 40, (2017), pp 40-48. 
DOI 10.1002/mma.3961 | 
MR 3583033[5] Polyanin, A. D., Zhurov, A. I.: 
Functional constraints method for constructing exact solutions to delay reactiondiffusion equations and more complex nonlinear equations.  Commun. Nonlinear Sci. Numer. Simulat., 19, (2014), pp 417-430. 
DOI 10.1016/j.cnsns.2013.07.017 | 
MR 3111621[6] Rebenda, J., Šmarda, Z.: 
A differential transformation approach for solving functional differential equations with multiple delays.  Commun. Nonlinear Sci. Numer. Simulat., 48, (2017), pp. 246-257. 
DOI 10.1016/j.cnsns.2016.12.027 | 
MR 3607372[7] Rebenda, J., Šmarda, Z., Khan, Y.: 
A New Semi-analytical Approach for Numerical Solving of Cauchy Problem for Differential Equations with Delay.  FILOMAT, 31, (2017), pp. 4725-4733. 
DOI 10.2298/FIL1715725R | 
MR 3725533