[1] Boichenko, V. A., Leonov, G. A., Reitmann, V.: 
Dimension Theory for Ordinary Differential Equations.  Wiesbaden:Vieweg-Teubner Verlag, 2005. 
MR 2381409[3] Doering, C. R., Gibbon, J. D., Holm, D. D., Nicolaenko, B.: 
Exact Lyapunov Dimension of the Universal Attractor for the Complex Ginzburg-Landau Equation.  Phys. Rev. Lett. 59, Iss. 26-28 (1987), pp. 2911–2914. 
DOI 10.1103/PhysRevLett.59.2911[4] Douady, A., Oesterle, J.: 
Dimension de Hausdorff des attracteurs.  Comptes Rendus del’Academie des Sciences Paris Serie A. 290 (1980), pp. 1135-1138. 
MR 0585918[5] Ghidaglia, M., Temam, R.: 
Attractors for damped nonlinear hyperbolic equations.  J. Math. Pures Appl., 66 (1987), pp. 273–319. 
MR 0913856[7] Kruck, A. V., Malykh, A. E., Reitmann, V.: 
Upper Hausdorff dimension estimates and stratification for invariant sets of evolutionary systems on Hilbert manifolds.  Differential Equations, 2017 (to appear). 
MR 3804278[8] Lang, S.: 
Differential and Riemannian Manifolds.  Springer, New York, 1995. 
MR 1335233[9] Leonov, G. A., Reitmann, V., Smirnova, V. B.: 
Non-local Methods for Pendulum-like Feedback Systems.  Teubner-Texte zur Mathematik, Bd. 132, B.G. Teubner Stuttgart-Leipzig, 1992. 
MR 1216519[10] Temam, R.: 
Infinite-Dimensional Dynamical Systems in Mechanics and Physics.  New York-Berlin: Springer-Verlag, 1988. 
MR 0953967