| Title:
             | 
Dependences between definitions of finiteness (English) | 
| Author:
             | 
Spišiak, Ladislav | 
| Author:
             | 
Vojtáš, Peter | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
38 | 
| Issue:
             | 
3 | 
| Year:
             | 
1988 | 
| Pages:
             | 
389-397 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
03E25 | 
| MSC:
             | 
03E30 | 
| idZBL:
             | 
Zbl 0667.03040 | 
| idMR:
             | 
MR950292 | 
| DOI:
             | 
10.21136/CMJ.1988.102234 | 
| . | 
| Date available:
             | 
2008-06-09T15:21:55Z | 
| Last updated:
             | 
2020-07-28 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/102234 | 
| . | 
| Reference:
             | 
[1] A. Blass: Existence of bases implies the axiom of choice.In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. Zbl 0557.03030, MR 0763890, 10.1090/conm/031/763890 | 
| Reference:
             | 
[2] J. D. Halpern P. E. Howard: Cardinals m such that 2m = m.Proc. Amer. Math. Soc. 26 (1970) 487-490. MR 0268034 | 
| Reference:
             | 
[3] J. D. Halpern P. E. Howard: Cardinal addition and the Axiom of Choice.Bull. Amer. Math. Soc. 80 (1974) 584-586. MR 0329890, 10.1090/S0002-9904-1974-13510-X | 
| Reference:
             | 
[4] T. Jech: Eine Bemerkung zum Auswahlaxiom.Časopis Pěst. Mat. 93 (1968), 30-31. Zbl 0167.27402, MR 0233706 | 
| Reference:
             | 
[5] T. Jech: The Axiom of Choice.Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. Zbl 0259.02052, MR 0396271 | 
| Reference:
             | 
[6] T. Jech A. Sochor: Applications of the $\Theta$-model.Bull. Acad. Polon. Sci. 16 (1966) 351-355. MR 0228337 | 
| Reference:
             | 
[7] A. Levy: The independence of various definitions of finiteness.Fund. Math. XLVI (1958) 1-13. Zbl 0089.00702, MR 0098671 | 
| Reference:
             | 
[8] A. Levy: Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic.Springer-Verlag 1979. MR 0533962 | 
| Reference:
             | 
[9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory).Periodica Math. Hungarica 10 (1979) 109-175. MR 0539225, 10.1007/BF02025889 | 
| Reference:
             | 
[10] G. Sageev: An independence result concerning the Axiom of Choice.Ann. Math. Logic 8(1975) 1-184. Zbl 0306.02060, MR 0366668, 10.1016/0003-4843(75)90002-9 | 
| Reference:
             | 
[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic.To appear. | 
| Reference:
             | 
[12] W. Sierpinski: Cardinal and ordinal numbers.PWN, Warszawa 1958. Zbl 0083.26803, MR 0095787 | 
| Reference:
             | 
[13] L. Spišiak: Definitions of finiteness.To appear. | 
| Reference:
             | 
[14] A. Tarski: Sur quelques théorèmes qui équivalent a l'axiome du choix.Fund. Math. 5 (1924) 147-154. 10.4064/fm-5-1-147-154 | 
| Reference:
             | 
[15] A. Tarski: Sur les ensembles finis.Fund. Math. 6 (1924) 45-95. 10.4064/fm-6-1-45-95 | 
| Reference:
             | 
[16] J. Truss: Classes of Dedekind finite cardinals.Fund. Math. To appear. Zbl 0292.02049, MR 0469760 | 
| . |