Article
Keywords:
ordinary differential equations with parameters; numerical solution; one-step method; parameter estimation; iterative methods; convergence; error estimates; numerical examples
Summary:
In the present paper we are concerned with the problem of numerical solution of ordinary differential equations with parameters. Our method is based on a one-step procedure for IDEs combined with an iterative process. Simple sufficient conditions for the convergence of this method are obtained. Estimations of errors and some numerical examples are given.
References:
                        
[1] I. Babuška M. Práger E. Vitásek: 
Numerical processes in differential equations. Praha 1966. 
MR 0223101 
[3] J. W. Daniel R. E. Moore: 
Computation and theory in ordinary differential equations. San Francisco 1970. 
MR 0267765 
[4] A. Gasparini A. Mangini: 
Sul calcolo numerico delle soluzioni di un noto problema ai limiti per l'equazione $y' = \lambda f(x,y)$. Le Matematiche 22 (1965), 101-121. 
MR 0191098 
[5] P. Henrici: 
Discrete variable methods in ordinary differential equations. John Wiley, New York 1962. 
MR 0135729 | 
Zbl 0112.34901 
[6] T. Jankowski M. Kwapisz: 
On the existence and uniqueness of solutions of boundary-value problem for differential equations with parameter. Math. Nachr. 71 (1976), 237-247. 
DOI 10.1002/mana.19760710119 | 
MR 0405190 
[7] H. B. Keller: 
Numerical methods for two-point boundary-value problems. Blaisdell, London 1968. 
MR 0230476 | 
Zbl 0172.19503 
[8] A. V. Kibenko A. I. Perov: 
A two-point boundary value problem with parameter. (Russian), Azerbaidzan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat. i Him. Nauka 3 (1961), 21 - 30. 
MR 0222376 
[10] A. Pasquali: 
Un procedimento di calcolo connesso ad un noto problema ai limiti per l'equazione $x'=f(t,x,\lambda)$. Le Matematiche 23 (1968), 319-328. 
MR 0267785 | 
Zbl 0182.22003 
[11] Z. B. Seidov: 
A multipoint boundary value problem with a parameter for systems of differential equations in Banach space. (Russian). Sibirski Math. Z. 9 (1968), 223 - 228. 
MR 0281987 
[12] J. Stoer R. Bulirsch: 
Introduction to numerical analysis. New York, Heidelberg, Berlin 1980. 
MR 0578346 
[13] H. J. Stetter: 
Analysis of discretization methods for ordinary differential equations. New York, Heidelberg, Berlin 1973. 
MR 0426438 | 
Zbl 0276.65001 
[14] K. Zawischa: 
Über die Differentialgleichung $y' = kf(x,y)$ deren Lösungskurve durch zwei gegebene Punkte hindurchgehen soll. Monatsh. Math. Phys. 37 (1930), 103-124. 
DOI 10.1007/BF01696760 | 
MR 1549778