| Title:
|
The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains (English) |
| Author:
|
Souček, Vladimír |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
12 |
| Issue:
|
4 |
| Year:
|
1971 |
| Pages:
|
723-736 |
| . |
| Category:
|
math |
| . |
| MSC:
|
35D05 |
| MSC:
|
35J25 |
| MSC:
|
35J60 |
| MSC:
|
35J67 |
| MSC:
|
49F10 |
| MSC:
|
49Q05 |
| MSC:
|
53A10 |
| idZBL:
|
Zbl 0256.35030 |
| idMR:
|
MR0296786 |
| . |
| Date available:
|
2008-06-05T20:36:55Z |
| Last updated:
|
2012-04-27 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105380 |
| . |
| Reference:
|
[1] R. FINN: Remark relevant to minimal surfaces and to surface of prescribed mean curvature.Journal d'Analyse Mathematique 14 (1965), 139-160. MR 0188909 |
| Reference:
|
[2] J. SOUČEK: The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $.- to appear in Czech. Math. Journ. MR 0313798 |
| Reference:
|
[3] J KAČÚR J. NEČAS J. SOUČEK: The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface.- to appear. |
| Reference:
|
[4] J. C. C. NITSCHE: On new results in the theory of minimal surfaces.Bull. Amer. math. Soc. 71 (1965), 195-270. Zbl 0135.21701, MR 0173993 |
| Reference:
|
[5] H. JENKINS J. SERRIN: Variational problems of minimal surface type II..Arch. Rat. Mech. Anal. 21 (1966), 321-342. MR 0190811 |
| . |