1. R. P. Agarwal: 
Difference Equations and Inequalities: Theory, Methods and Applications. Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000. 
MR 1740241 | 
Zbl 0952.39001 2. C. D. Ahlbrandt A. C. Peterson: 
Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996. 
MR 1423802 4. J. H. Barrett: 
A Prüfer transformation for matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518. 
MR 0087821 | 
Zbl 0079.10603 5. M. Bohner: 
Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804–826. 
MR 1386607 6. M. Bohner O. Došlý: 
Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. 
MR 1490271 7. M. Bohner O. Došlý: 
Trigonometric transformation of symplectic difference systems. J. Differential Equ. 163 (2000), 113-129. 
MR 1755071 8. M. Bohner O. Došlý: 
Discrete Prüfer transformation. to appear in Proc. Amer. Math. Soc. 
MR 1838796 9. W. A. Coppel: 
Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. 
MR 0460785 | 
Zbl 0224.34003 10. O. Došlý: 
On transformations of self-adjoint differential systems and their reciprocals. Ann. Polon. Math. 50 (1990), 223-234. 
MR 1064996 11. O. Došlý: 
Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450. 
MR 1665162 12. O. Došlý: 
Methods of oscillation theory of half-linear second order differential equations. Czech. Math. J. 50 (125) (2000), 657-671. 
MR 1777486 13. O. Došlý R. Hilscher: A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD. submitted.
 14. O. Došlý J. Osička: 
Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math., 2 (1995), 241-258. 
MR 1334880 15. O. Došlý J. Osička: 
Oscillation and nonoscillation of higher order self-adjoint differential equations. to appear in Czech. Math. J. 
MR 1940063 16. O. Došlý P. Řehák: 
Nonoscillation criteria for half-linear second order difference equations. to appear in Comput. Appl. Math. 
MR 1838006 17. S. N. Elaydi: 
An Introduction to Difference Equations. Second Edition, Springer Verlag, 2000. 
MR 1711587 | 
Zbl 1071.39001 18. U. Elias: 
Oscillation Theory of Two-Term Differential equations. Kluwer, Dordrecht-Boston-London, 1997. 
MR 1445292 | 
Zbl 0878.34022 19. I. M. Gelfand S. V. Fomin: 
Calculus of Variations. Prentice Hall, Engelwood, 1963. 
MR 0160139 20. B. Harris R. J. Kruger W. T.Trench: 
Trench’s canonical form for a disconjugate n-th order linear difference equations. Panamer. Math. J. 8 (1998), 55-71. 
MR 1642648 21. P. Hartman: 
Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Amer. Math. Soc. 246 (1978), 1–30. 
MR 0515528 22. W. G. Kelley A. Peterson: 
Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. 
MR 1142573 23. S. Peňa: 
Discrete spectra criteria for singular difference operators. Math. Bohem. 124 (1999), 35–44. 
MR 1687425 24. G. Polya: 
On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. 
MR 1501228 25. H. Prüfer: 
Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), 499-518. 
MR 1512291 26. W. T. Reid: 
Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin 1980. 
MR 0606199 | 
Zbl 0459.34001 27. W. F. Trench: 
Canonical forms and principal systems of general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327.  
MR 0330632