2. Bugajewska D.: Topological properties of solution sets of some problems for differential equations. Ph. D. Thesis, Poznań, 1999.
  3. Bugajewska D., Bugajewski D.: 
On topological properties of solution sets for differential equations in locally convex spaces. submitted. 
Zbl 1042.34555  4. Bugajewski D.: 
On the Volterra integral equation in locally convex spaces. Demonstratio Math., 25, 1992, 747-754. 
MR 1222551 | 
Zbl 0781.45012  5. Bugajewski D.: 
On differential and integral equations in locally convex spaces. Demonstratio Math., 28, 1995, 961-966. 
MR 1392249 | 
Zbl 0855.34071  6. Bugajewski D., Szufla S.: 
Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Analysis, 20, No 2, 1993, 169-173. 
MR 1200387  7. Constantin A.: 
On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$. Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. 
MR 1244738  8. Hukuhara M.: 
Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique. J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. 
MR 0108630  9. Januszewski J., Szufla S.: 
On the Urysohn integral equation in locally convex spaces. Publ. Inst. Math., 51, No 65, 1992, 77-80. 
MR 1213650 11. Krasnoselski M.A., Krein S.G.: K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach. Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23.
 12. Lemmert R.: 
On ordinary differential equations in locally convex spaces. Nonlinear Analysis, 10, No 12, 1986, 1385-1390. 
MR 0869547 | 
Zbl 0612.34056 13. Millionščikov W.: K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach. Dokl. Akad. Nauk SSSR, 131, 1960, 510-513.
 14. Pianigiani P.: Existence of solutions of an ordinary differential equations in the case of Banach space. Bull. Ac. Polon.: Math., 8, 1976,667-673.
 15. Reichert M.: 
Condensing Volterra operators in locally convex spaces. Analysis, 16, 1996, 347-364. 
MR 1429459 | 
Zbl 0866.47042 16. Sadovski B. N.: 
Limit-compact and condensing mappings. Russian Math. Surveys, 27, 1972, 81-146. 
MR 0428132 17. Szufla S.: 
Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon.: Math., 26, 1978, 407-413. 
MR 0492684 18. Szufla S.: 
On the Kneser-Hukuhara property for integral equations in locally convex spaces. Bull. Austral. Math. Soc., 36, 1987, 353-360.  
MR 0923817