1. Čermák J.: 
Note on simultaneous solutions of a system of Schröder’s equations. Math. Bohemica 120, 1995, 225–236. 
MR 1369682  2. Čermák J.: 
The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 115. 1998, 373–388. 
MR 1644331  3. Čermák J.: 
Asymptotic estimation for functional differential equations with several delays. Arch. Math. (Brno) 35, 1999, 337–345. 
MR 1744521  4. Derfel G.: 
Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotic of the solutions. J. Math. Anal. Appl. 193, 1995, 671–679. 
MR 1338729  5. Diblík J.: 
Asymptotic equilibrium for a class of delay differential equations. Proc. of the Second International Conference on Difference equations (S. Elaydi, I. Győri, G. Ladas, eds.), 1995, 137–143. 
MR 1636319  6. Iserles A.: 
On generalized pantograph functional-differential equation. European J. Appl. Math. 4, 1993, 1–38. 
MR 1208418  7. Kato T., McLeod J. B.: 
The functional differential equation $y'(x) = a y(\lambda x) + b y(x). Bull. Amer. Math. Soc. 77, 1971, 891–937. 
MR 0283338  8. Kuczma M., Choczewski B., Ger R.: 
Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. 
MR 1067720 | 
Zbl 0703.39005  9. Lim E. B.: 
Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + bx(t) + f (t)$, $0 < \lambda < 1$. SIAM J. Math. Anal. 9, 1978, 915–920. 
MR 0506772 10. Liu Y.: 
Regular solutions of the Shabat equation. J. Differential Equations 154, 1999, 1–41. 
MR 1684290 | 
Zbl 0929.34054 11. Makay G., Terjéki J.: 
On the asymptotic behavior of the pantograph equations. E. J. Qualitative Theory of Diff. Equ 2, 1998, 1–12. 
MR 1615106 12. Neuman F.: 
Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107), 1982, 488–494. 
MR 0669790 | 
Zbl 0524.34070 13. Pandolfi L.: 
Some observations on the asymptotic behaviors of the solutions of the equation $x'(t) = A(t)x(\lambda t)+B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl. 67, 1979, 483–489. 
MR 0528702