Article
Keywords:
complex Grassmann manifold; harmonic map; harmonic sequence; genus; the generalized Frenet formulae
Summary:
Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given.
References:
                        
[1] Chern S. S., Wolfson J. G.: 
Harmonic maps of the two-spheres into a complex Grassmann manifold II. Ann. Math. 125 (1987), 301–335.  
MR 0881271[2] Wolfson J. G.: 
Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds. J. Diff. Geom. 27 (1988), 161–178.  
MR 0918462[3] Liao R.: 
Cyclic properties of the harmonic sequence of surfaces in CP$^{n}$. Math. Ann. 296 (1993), 363–384.  
MR 1219907[4] Dong Y. X.: 
On the isotropy of harmonic maps from surfaces to complex projective spaces. Inter. J. Math. 3 (1992), 165–177.  
MR 1146809 | 
Zbl 0759.58013[5] Jensen G. R., Rigoli M.: 
On the isotropy of compact minimal surfaces in CP$^{n}$. Math. Z. 200 (1989), 169–180.  
MR 0978292[6] Burstall F. E., Wood J. C.: 
The construction of harmonic maps into complex Grassmannian. J. Diff. Geom. 23 (1986), 255–297.  
MR 0852157[7] Uhlenbeck K.: 
Harmonic maps into Lie groups (classical solutions of the chiral model. J. Diff. Geom. 30 (1989), 1–50.  
MR 1001271 | 
Zbl 0677.58020[8] Shen Y. B., Dong Y. X.: 
On pseudo-holomorphic curves in complex Grassmannian. Chin. Ann. Math. 20B (1999), 341–350.  
MR 1749475[9] Eschenburg J. H., Guadalupe I. V., Tribuzy R. A.: 
The fundamental equations of minimal surfaces in CP$^{2}$. Math. Ann. 270 (1985), 571–598.  
MR 0776173[10] Eells J., Wood J. C.: 
Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49 (1983), 217–263.   
MR 0716372 | 
Zbl 0528.58007