| Title:
|
Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces (English) |
| Author:
|
Morales, Claudio H. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
33 |
| Issue:
|
4 |
| Year:
|
1992 |
| Pages:
|
625-630 |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $X$ be a real Banach space. A multivalued operator $T$ from $K$ into $2^X$ is said to be pseudo-contractive if for every $x,y$ in $K$, $u\in T(x)$, $v\in T(y)$ and all $r>0$, $\|x-y\|\leq \|(1+r)(x-y)-r(u-v)\|$. Denote by $G(z,w)$ the set $\{u\in K :\|u-w\|\leq \|u-z\|\}$. Suppose every bounded closed and convex subset of $X$ has the fixed point property with respect to nonexpansive selfmappings. Now if $T$ is a Lipschitzian and pseudo-contractive mapping from $K$ into the family of closed and bounded subsets of $K$ so that the set $G(z,w)$ is bounded for some $z\in K$ and some $w\in T(z)$, then $T$ has a fixed point in $K$. (English) |
| Keyword:
|
pseudo-contractive mappings |
| MSC:
|
47H04 |
| MSC:
|
47H09 |
| MSC:
|
47H10 |
| idZBL:
|
Zbl 0794.47038 |
| idMR:
|
MR1240184 |
| . |
| Date available:
|
2009-01-08T17:59:09Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118534 |
| . |
| Reference:
|
[1] Browder F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces.Bull. Amer. Math. Soc. 73 (1967), 875-882. Zbl 0176.45302, MR 0232255 |
| Reference:
|
[2] Canetti A., Marino G., Pietramala P.: Fixed point theorems for multivalued mappings in Banach spaces.Nonlinear Analysis, T.M.A. 17 (199011-20). Zbl 0765.47016, MR 1113446 |
| Reference:
|
[3] Downing D., Kirk W.A.: Fixed point theorems for set-valued mappings in metric and Banach spaces.Math. Japonica 22 (1977), 99-112. Zbl 0372.47030, MR 0473934 |
| Reference:
|
[4] Goebel K., Kuczumow T.: A contribution to the theory of nonexpansive mappings.preprint. Zbl 0437.47040, MR 0584472 |
| Reference:
|
[5] Kato T.: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. Zbl 0163.38303, MR 0226230 |
| Reference:
|
[6] Kirk W.A., Ray W.O.: Fixed point theorems for mappings defined on unbounded sets in Banach spaces.Studia Math 64 (1979), 127-138. Zbl 0412.47033, MR 0537116 |
| Reference:
|
[7] Morales C.H.: Pseudo-contractive mappings and the Leray-Schauder boundary condition.Comment. Math. Univ. Carolinae 20 (1979), 745-756. Zbl 0429.47021, MR 0555187 |
| Reference:
|
[8] Morales C.H.: Remarks on pseudo-contractive mappings.J. Math. Anal. Appl. 87 (1982), 158-164. Zbl 0486.47030 |
| Reference:
|
[9] Morales C.H.: Set-valued mappings in Banach spaces.Houston J. Math. 9 (1983), 245-253. Zbl 0523.47038, MR 0703273 |
| Reference:
|
[10] Nadler S.B., Jr.: Multi-valued contraction mappings.Pacific J. Math. 30 (1969), 475-488. Zbl 0187.45002, MR 0254828 |
| Reference:
|
[11] Ray W.O.: The fixed point property and unbounded sets in Hilbert space.Trans. Amer. Math. Soc. 258 (1980), 531-537. Zbl 0433.47026, MR 0558189 |
| Reference:
|
[12] Ray W.O.: Zeros of accretive operators defined on unbounded sets.Houston J. Math. 5 (1979), 133-139. Zbl 0412.47032, MR 0533647 |
| . |