[2] Gupta C. P.: 
Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551. 
MR 1176010 
[3] Gupta C. P.: 
A note on a second order three-point boundary value problem. J. Math. Anal. Appl. 186 (1994), 277-281. 
MR 1290657 | 
Zbl 0805.34017 
[4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. Cambridge Univ. Press, London-New York, 1967.
[5] Haščák A.: 
Disconjugacy and multipoint boundary value problems for linear differential equations with delay. Czech. Math. J. 114, 39 (1989), 70-77. 
MR 0983484 | 
Zbl 0689.34058 
[6] Haščák A.: 
Tests for disconjugacy and strict disconjugacy of linear differential equations with delays. Czech. Math. J. 114, 39 (1989), 225-231. 
MR 0992129 | 
Zbl 0703.34072 
[7] Haščák A.: 
On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay. Arch. Math. (Brno), 26, 4 (1990), 207-214. 
MR 1188972 
[8] Marano S. A.: 
A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522. 
MR 1274852 | 
Zbl 0801.34025 
[9] Mawhin J.: 
Topological Degree Methods in Nonlinear Boundary Value Problems. In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. 
MR 0525202 | 
Zbl 0414.34025 
[10] Ricceri O. N., Ricceri B.: 
An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. 
MR 1116184 
[11] Staněk S.: 
On some boundary value problems for second order functional differential equations. Nonlin. Anal. (in press). 
Zbl 0873.34053 
[12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem. Ann. Math. Silesianae, Katowice (in press).