[1] Darnel M. R.: 
Theory of Lattice-Ordered Groups. Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995. 
MR 1304052 | 
Zbl 0810.06016[2] Chang C. C.: 
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88, 467-490. 
MR 0094302[3] Cignoli R. L. O., D’Ottaviano I. M. L., Mundici D.: 
Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. 
MR 1786097 | 
Zbl 0937.06009[4] Dvurečenskij A.: 
Pseudo MV-algebras are intervals in l-groups. J. Austral. Math. Soc. (Ser. A) (to appear). 
MR 1902211[5] Dvurečenskij A., Pulmannová S.: 
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. 
MR 1861369[6] Georgescu G., Iorgulescu A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras. In.: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, 961-968.
[7] Georgescu G., Iorgulescu A.: 
Pseudo-MV algebras. Multiple Valued Logic 6 (2001), 95-135. 
MR 1817439 | 
Zbl 1014.06008[8] Rachůnek J.: 
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. (to appear). 
MR 1905434 | 
Zbl 1012.06012[9] Rachůnek J.: 
Prime spectra of non-commutative generalizations of MV-algebras. (submitted). 
Zbl 1058.06015