[1] R.  Cignoli, I. D.  D’Ottaviano, and D.  Mundici: 
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1786097 
[2] A.  De Simone, D.  Mundici, and M.  Navara: 
A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. Czechoslovak Math.  J. 53 (2003), 437–447. 
DOI 10.1023/A:1026299723322 | 
MR 1983464 
[3] A.  De Simone, M.  Navara, and P.  Pták: 
On interval homogeneous orthomodular lattices. Commentat. Math. Univ. Carolinae 42 (2001), 23–30. 
MR 1825370 
[6] G.  Georgescu, A.  Iorgulescu: 
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. Proc. Fourth Int. Symp. Econ. Informatics, Bucharest, 1999, pp. 961–968. 
MR 1730100 
[7] G.  Georgescu, A.  Iorgulescu: 
Pseudo $MV$-algebras. Multiple-valued Logics 6 (2001), 95–135. 
MR 1817439 
[8] J.  Hashimoto: 
On the product decomposition of partially ordered sets. Math. Jap. 1 (1948), 120–123. 
MR 0030502 | 
Zbl 0041.37801 
[9] J.  Jakubík: Direct product decompositions of partially ordered groups. Czechoslovak Math.  J. 10 (1960), 231–243. (Russian)
[10] J.  Jakubík: 
Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 159-175. 
MR 0297666 
[11] J.  Jakubík, M.  Csontóová: 
Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–378. 
MR 1251882 
[12] J.  Jakubík: 
Complete lattice ordered groups with strong units. Czechoslovak Math.  J. 46 (1996), 221–230. 
MR 1388611 
[13] J.  Jakubík: 
Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49–56. 
MR 1632739 
[15] J.  Jakubík: 
Direct product decompositions of infinitely distributive lattices. Math. Bohemica 125 (2000), 341–354. 
MR 1790125 
[16] J.  Jakubík: 
Convex mappings of archimedean $MV$-algebras. Math. Slovaca 51 (2001), 383–391. 
MR 1864107 
[17] J.  Jakubík: 
Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2002), 131–142. 
MR 1838410 
[18] J.  Jakubík: 
Cantor-Bernstein theorem for lattices. Math. Bohem. 127 (2002), 463–471. 
MR 1931330 
[19] J.  Jakubík: 
A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Tatra Mt. Math. Publ. 22 (2002), 91–103. 
MR 1889037 
[20] G.  Jenča: 
A Cantor-Bernstein type theorem for effect algebras. Algebra Univers. 48 (2002), 399–411. 
MR 1967089 
[21] A. G.  Kurosh: Group Theory. Nauka, Moskva, 1953. (Russian)