Article
Keywords:
discontinuous wave equations; topological degree; multi-valued mappings
Summary:
The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.
References:
                        
[1] J. Berkovits: 
Some bifurcation results for a class of semilinear equations via topological degree method. Bull. Soc. Math. Belg. 44 (1992), 237–247. 
MR 1314039 | 
Zbl 0783.47069 
[2] J. Berkovits & V. Mustonen: 
An extension of Leray-Schauder degree and applications to nonlinear wave equations. Diff. Int. Eqns. 3 (1990), 945–963. 
MR 1059342 
[3] J. Berkovits & V. Mustonen: 
Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. VII-12 (1992), 597–621. 
MR 1205967 
[8] H. Gajewski, K. Gröger & K. Zacharias: 
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. 
MR 0636412 
[9] A. Kittilä: 
On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. A I Math. Disser. 91 (1994). 
MR 1263099