[1] E. L.  Allgower. K. Georg: 
Numerical Continuation Methods. Springer Verlag, New York, 1990. 
MR 1059455 | 
Zbl 0717.65030 
[2] J.  Bošek, V.  Janovský: A note on the recursive projection method. Proceedings of GAMM96. Z. Angew. Math. Mech. (1977), 437-440.
[3] B. D.  Davidson: 
Large-scale continuation and numerical bifurcation for partial differential equations. SIAM J. Numer. Anal. 34 (1997), 2001–2027. 
MR 1472207 | 
Zbl 0894.65023 
[4] T. J. Garratt, G.  Moore and A.  Spence: 
A generalised Cayley transform for the numerical detection of Hopf bifurcation points in large systems. Contributions in numerical mathematics, World Sci. Ser. Appl. Anal. (1993), 177–195. 
MR 1299759 
[5] G. H.  Golub, Ch. F.  van Loan: 
Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996. 
MR 1417720 
[6] V.  Janovský, O.  Liberda: Recursive Projection Method for detecting bifurcation points. Proceedings SANM’99, Union of Czech Mathematicians and Physicists, 1999, pp. 121–124.
[7] V.  Janovský, O. Liberda: Projected version of the Recursive Projection Method algorithm. Proceedings of 3rd Scientific Colloquium, Institute of Chemical Technology, Prague, 2001, pp. 89–100.
[8] M.  Kubíček, M.  Marek: 
Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, 1983. 
MR 0719370 
[10] K.  Lust, D.  Roose: 
Computation and bifurcation analysis of periodic solutions of large–scale systems. IMA Preprint Series #1536, Feb.  1998, IMA, University of Minnesota. 
MR 1768366 
[11] G. M.  Shroff, H. B. Keller: 
Stabilization of unstable procedures: the Recursive Projection Method. SIAM J.  Numer. Anal. 30 (1993), 1099–1120. 
DOI 10.1137/0730057 | 
MR 1231329