[3] Goodearl K.R.: 
Von Neumann Regular Rings. Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. 
MR 0533669 | 
Zbl 0841.16008[4] Kunen K.: 
Set Theory: An Introduction to Independence Proofs. North Holland, Amsterdam, 1980. 
MR 0597342 | 
Zbl 0534.03026[5] Rentschler R.: 
Sur les modules $M$ tels que $Hom(M,-)$ commute avec les sommes directes. C.R. Acad. Sci. Paris 268 (1969), 930–933. 
MR 0241466 | 
Zbl 0179.06102[6] Růžička P., Trlifaj J., Žemlička J.: 
Criteria of steadiness. Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. 
MR 1651181 | 
Zbl 0917.16004[7] Stenström B.: 
Rings of Quotients. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. 
MR 0389953[9] Trlifaj J.: 
Steady rings may contain large sets of orthogonal idempotents. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. 
MR 1378220 | 
Zbl 0845.16009[10] Zelenyuk E.G.: 
Ultrafilters and topologies on groups. de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. 
MR 2768144 | 
Zbl 1215.22001[12] Žemlička J.: 
Classes of dually slender modules. Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. 
MR 2338602 | 
Zbl 1152.16004[13] Žemlička J., and Trlifaj J.: 
Steady ideals and rings. Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. 
MR 1492975