[2] Baird P., Wood J.C.: 
Harmonic Morphisms between Riemannain Manifolds. Clarendon Press, Oxford, 2003. 
MR 2044031[3] Course N.: 
f-harmonic maps which map the boundary of the domain to one point in the target. New York J. Math. 13 (2007), 423–435 (electronic). 
MR 2357720 | 
Zbl 1202.58012[4] Djaa M., Cherif A.M., Zegga K., Ouakkas S.: 
On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5 (2012), no. 1, 90–100. 
MR 2915490[5] Mustapha D., Cherif A.M.: 
On the generalized $f$-biharmonic maps and stress $f$-bienergy tensor. Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81. 
MR 3113559[7] Gudmundsson S.: 
The geometry of harmonic morphisms. University of Leeds, Department of Pure Mathematics, April 1992. 
Zbl 0715.53029[8] Ishihara T.: 
A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. 
MR 0545705 | 
Zbl 0421.31006[9] Lichnerowicz A.: 
Applications harmoniques et variétés Kähleriennes. 1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London. 
MR 0262993 | 
Zbl 0193.50101[10] Ou Y.L.: On $f$-harmonic morphisms between Riemannian manifolds. arxiv:1103.5687, Chinese Ann. Math., series B(to appear).
[11] Ouakkas S., Nasri R., Djaa M.: 
On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10 (2010), no. 1, 11–27. 
MR 2677559 | 
Zbl 1209.58014