| Title:
             | 
Some properties complementary to Brualdi-Li matrices (English) | 
| Author:
             | 
Wang, Chuanlong | 
| Author:
             | 
Yong, Xuerong | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
65 | 
| Issue:
             | 
1 | 
| Year:
             | 
2015 | 
| Pages:
             | 
135-149 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries. (English) | 
| Keyword:
             | 
tournament matrix | 
| Keyword:
             | 
Brualdi-Li matrix | 
| Keyword:
             | 
eigenvalue | 
| Keyword:
             | 
Perron value | 
| MSC:
             | 
05C20 | 
| MSC:
             | 
05C50 | 
| MSC:
             | 
15A15 | 
| idZBL:
             | 
Zbl 06433725 | 
| idMR:
             | 
MR3336029 | 
| DOI:
             | 
10.1007/s10587-015-0164-7 | 
| . | 
| Date available:
             | 
2015-04-01T12:27:50Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144217 | 
| . | 
| Reference:
             | 
[1] Brauer, A., Gentry, I. C.: Some remarks on tournament matrices.Linear Algebra Appl. 5 (1972), 311-318. Zbl 0246.15012, MR 0304206 | 
| Reference:
             | 
[2] Brauer, A., Gentry, I. C.: On the characteristic roots of tournament matrices.Bull. Am. Math. Soc. 74 (1968), 1133-1135. Zbl 0167.03002, MR 0232784, 10.1090/S0002-9904-1968-12079-8 | 
| Reference:
             | 
[3] Brualdi, R., Li, Q.: Problem 31.Discrete Mathematics 43 (1983), 329-330. | 
| Reference:
             | 
[4] Davis, P. J.: Circulant Matrices. Pure & Applied Mathematics.John Wiley & Sons New York (1979). MR 0543191 | 
| Reference:
             | 
[5] Friedland, S.: Eigenvalues of almost skew symmetric matrices and tournament matrices.Combinatorial and Graph-Theoretical Problems in Linear Algebra; Proceedings of a workshop held at the University of Minnesota, USA, 1991;  IMA Vol. Math. Appl. 50 Springer, New York (1993), 189-206 R. A. Brualdi et al. Zbl 0789.15019, MR 1240964 | 
| Reference:
             | 
[6] Gregory, D. A., Kirkland, S. J.: Singular values of tournament matrices.Electron. J. Linear Algebra (electronic only) 5 (1999), 39-52. Zbl 0915.05085, MR 1668927 | 
| Reference:
             | 
[7] Gregory, D. A., Kirkland, S. J., Shader, B. L.: Pick's inequality and tournaments.Linear Algebra Appl. 186 (1993), 15-36. Zbl 0776.05072, MR 1217195 | 
| Reference:
             | 
[8] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge Mathematical Library Cambridge Univ. Press, Cambridge (1952). Zbl 0047.05302, MR 0046395 | 
| Reference:
             | 
[9] Hemasinha, R., Weaver, J. R., Kirkland, S. J., Stuart, J. L.: Properties of the Brualdi-{L}i tournament matrix.Linear Algebra Appl. 361 (2003), 63-73. Zbl 1017.05074, MR 1955553 | 
| Reference:
             | 
[10] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix.Am. J. Math. 76 (1954), 620-630. Zbl 0055.24601, MR 0063336, 10.2307/2372705 | 
| Reference:
             | 
[11] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press Cambridge (1991). Zbl 0729.15001 | 
| Reference:
             | 
[12] Kirkland, S.: An upper bound on the Perron value of an almost regular tournament matrix.Linear Algebra Appl. 361 (2003), 7-22. Zbl 1019.15004, MR 1955551 | 
| Reference:
             | 
[13] Kirkland, S.: A note on Perron vectors for almost regular tournament matrices.Linear Algebra Appl. 266 (1997), 43-47. Zbl 0901.15011, MR 1473192 | 
| Reference:
             | 
[14] Kirkland, S.: A note on the sequence of Brualdi-{L}i matrices.Linear Algebra Appl. 248 (1996), 233-240. Zbl 0865.15014, MR 1416458, 10.1016/0024-3795(95)00196-4 | 
| Reference:
             | 
[15] Kirkland, S.: On the minimum Perron value for an irreducible tournament matrix.Linear Algebra Appl. 244 (1996), 277-304. Zbl 0860.15016, MR 1403286 | 
| Reference:
             | 
[16] Kirkland, S.: Hypertournament matrices, score vectors and eigenvalues.Linear Multilinear Algebra 30 (1991), 261-274. Zbl 0751.15009, MR 1129183, 10.1080/03081089108818111 | 
| Reference:
             | 
[17] Kirkland, S. J., Shader, B. L.: Tournament matrices with extremal spectral properties.Linear Algebra Appl. 196 (1994), 1-17. Zbl 0790.15021, MR 1273972 | 
| Reference:
             | 
[18] Maybee, J. S., Pullman, N. J.: Tournament matrices and their generalizations. I.Linear Multilinear Algebra 28 (1990), 57-70. Zbl 0714.05041, MR 1077735, 10.1080/03081089008818030 | 
| Reference:
             | 
[19] Mirsky, L.: Inequalities and existence theorems in the theory of matrices.J. Math. Anal. Appl. 9 (1964), 99-118. Zbl 0133.26202, MR 0163918, 10.1016/0022-247X(64)90009-5 | 
| Reference:
             | 
[20] Moon, J. W.: Topics on Tournaments.Holt, Rinehart and Winston New York (1968). Zbl 0191.22701, MR 0256919 | 
| Reference:
             | 
[21] Moon, J. W., Pullman, N. J.: On generalized tournament matrices.SIAM Rev. 12 (1970), 384-399. Zbl 0198.03804, MR 0272644, 10.1137/1012081 | 
| Reference:
             | 
[22] Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry.Classics in Mathematics Springer, Berlin (1998). Zbl 1024.00003, MR 1492448 | 
| Reference:
             | 
[23] Shader, B. L.: On tournament matrices.Linear Algebra Appl. 162-164 (1992), 335-368. Zbl 0744.15015, MR 1148408 | 
| . |