[2] Belobrov P.K.: 
The Čebyšev point of a system of sets. Izv. Vysš. Učebn. Zaved. Matematika 55 (1966), 18–24. 
MR 0208332 | 
Zbl 0192.22501[3] Bestvina M.: 
$\mathbb R$-trees in Topology, Geometry, and Group Theory. Handbook of Geometric Topology, 55–91, North-Holland, Amsterdam, 2002. 
MR 1886668[5] Borsuk K.: 
On the third symmetric potency of the circumference. Fund. Math. 36 (1949), 236–244. 
MR 0035987 | 
Zbl 0039.19301[6] Borovikova M., Ibragimov Z.: 
The third symmetric product of $ \mathbb R$. Comput. Methods Funct. Theory 9 (2009), 255–268. 
DOI 10.1007/BF03321726 | 
MR 2478275[7] Borovikova M., Ibragimov Z., Yousefi H.: 
Symmetric products of the real line. J. Anal. 18 (2010), 53–67. 
MR 2850235 | 
Zbl 1239.30030[9] Bridson M.R., Haefliger A.: 
Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften, 319, Springer, Berlin, 1999. 
MR 1744486 | 
Zbl 0988.53001[12] Illanes A.: 
Nadler S.B., Jr. {\it Hyperspaces}, Marcel Dekker, New York, 1999. 
MR 1670250[13] Ivanshin P.N., Sosov E.N.: 
Local Lipschitz property for the Chebyshev center mapping over N-nets. Mat. Vesnik 60 (2008), 9–22. 
MR 2403268 | 
Zbl 1199.54169[15] Molski R.: 
On symmetric product. Fund. Math. 44 (1957), 165–170. 
MR 0092953[16] Morton H.R.: 
Symmetric product of the circle. Proc. Cambridge Philos. Soc. 63 (1967), 349–352. 
MR 0210096[17] Valentine F.A.: 
Convex Sets. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. 
MR 0170264 | 
Zbl 0333.52001[18] Wu W.: 
Note sur les produits essentiels symétriques des espaces topologiques. C.R. Acad. Sci. Paris 224 (1947), 1139–1141. 
MR 0019914