Previous |  Up |  Next

Article

Title: $C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic (English)
Author: Llibre, Jaume
Author: Sirvent, Víctor F.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 83-90
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a connected closed manifold and $f$ a self-map on $X$. We say that $f$ is almost quasi-unipotent if every eigenvalue $\lambda $ of the map $f_{*k}$ (the induced map on the \mbox {$k$-th} homology group of $X$) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ odd is equal to the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ even. \endgraf We prove that if $f$ is $C^1$ having finitely many periodic points all of them hyperbolic, then $f$ is almost quasi-unipotent. (English)
Keyword: hyperbolic periodic point
Keyword: differentiable map
Keyword: Lefschetz number
Keyword: Lefschetz zeta function
Keyword: quasi-unipotent map
Keyword: almost quasi-unipotent map
MSC: 37C05
MSC: 37C25
MSC: 37C30
idZBL: Zbl 06562160
idMR: MR3475139
DOI: 10.21136/MB.2016.6
.
Date available: 2016-03-17T19:47:58Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/144853
.
Reference: [1] Alsedà, L., Baldwin, S., Llibre, J., Swanson, R., Szlenk, W.: Minimal sets of periods for torus maps via Nielsen numbers.Pac. J. Math. 169 (1995), 1-32. Zbl 0843.55004, MR 1346243, 10.2140/pjm.1995.169.1
Reference: [2] Berrizbeitia, P., Sirvent, V. F.: On the Lefschetz zeta function for quasi-unipotent maps on the $n$-dimensional torus.J. Difference Equ. Appl. 20 (2014), 961-972. Zbl 1305.37021, MR 3210324, 10.1080/10236198.2013.872637
Reference: [3] Brown, R. F.: The Lefschetz Fixed Point Theorem.Scott, Foresman London (1971). Zbl 0216.19601, MR 0283793
Reference: [4] Santos, N. M. dos, Urzúa-Luz, R.: Minimal homeomorphisms on low-dimensional tori.Ergodic Theory Dyn. Syst. 29 (2009), 1515-1528. MR 2545015
Reference: [5] Franks, J. M.: Homology and Dynamical Systems.CBMS Regional Conference Series in Mathematics 49 American Mathematical Society, Providence (1982). Zbl 0497.58018, MR 0669378
Reference: [6] Franks, J. M.: Some smooth maps with infinitely many hyperbolic periodic points.Trans. Am. Math. Soc. 226 (1977), 175-179. Zbl 0346.58011, MR 0436221
Reference: [7] Guirao, J. L. García, Llibre, J.: Minimal Lefschetz sets of periods for Morse-Smale diffeomorphisms on the $n$-dimensional torus.J. Difference Equ. Appl. 16 (2010), 689-703. MR 2675600, 10.1080/10236190903203887
Reference: [8] Llibre, J., Sirvent, V. F.: $C^1$ self-maps on closed manifolds with all their points hyperbolic.Houston J. Math 41 (2015), 1119-1127. MR 3455349
Reference: [9] Llibre, J., Sirvent, V. F.: Minimal sets of periods for Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary.J. Difference Equ. Appl. 19 (2013), 402-417. MR 3037282, 10.1080/10236198.2011.647006
Reference: [10] Llibre, J., Sirvent, V. F.: Minimal sets of periods for Morse-Smale diffeomorphisms on orientable compact surfaces.Houston J. Math. 35 (2009), 835-855 erratum ibid. 36 335-336 (2010). Zbl 1214.37027, MR 2534284
Reference: [11] Shub, M., Sullivan, D.: Homology theory and dynamical systems.Topology 14 (1975), 109-132. Zbl 0408.58023, MR 0400306, 10.1016/0040-9383(75)90022-1
Reference: [12] Smale, S.: Differentiable dynamical systems.With an appendix to the first part of the paper: ``Anosov diffeomorphisms'' by J. Mather Bull. Am. Math. Soc. 73 (1967), 747-817. Zbl 0202.55202, MR 0228014
Reference: [13] Vick, J. W.: Homology Theory. An Introduction to Algebraic Topology.Graduate Texts in Mathematics 145 Springer, New York (1994). Zbl 0789.55004, MR 1254439, 10.1007/978-1-4612-0881-5
.

Files

Files Size Format View
MathBohem_141-2016-1_6.pdf 238.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo