| Title:
             | 
New rotational integrals in space forms, with an application to surface area estimation (English) | 
| Author:
             | 
Gual-Arnau, Ximo | 
| Author:
             | 
Cruz-Orive, Luis M. | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
61 | 
| Issue:
             | 
4 | 
| Year:
             | 
2016 | 
| Pages:
             | 
489-501 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary. (English) | 
| Keyword:
             | 
critical point | 
| Keyword:
             | 
height function | 
| Keyword:
             | 
submanifold in space forms | 
| Keyword:
             | 
invariator principle | 
| Keyword:
             | 
local stereology | 
| Keyword:
             | 
rotational formulae | 
| Keyword:
             | 
surface area estimation | 
| MSC:
             | 
53C65 | 
| idZBL:
             | 
Zbl 06644008 | 
| idMR:
             | 
MR3532255 | 
| DOI:
             | 
10.1007/s10492-016-0143-9 | 
| . | 
| Date available:
             | 
2016-08-01T09:30:00Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/145797 | 
| . | 
| Reference:
             | 
[1] Auneau, J., Jensen, E. B. V.: Expressing intrinsic volumes as rotational integrals.Adv. Appl. Math. 45 (2010), 1-11. Zbl 1202.60018, MR 2628780, 10.1016/j.aam.2009.11.010 | 
| Reference:
             | 
[2] Blaschke, W.: Integralgeometrie 1.Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935). | 
| Reference:
             | 
[3] Cartan, E.: Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé.Bull. Soc. Math. Fr. 24 (1896), 140-177 French. | 
| Reference:
             | 
[4] Crofton, M. W.: On the theory of local probability, applied to Straight Lines drawn at random in a plane; the methods used being also extended to the proof of certain new Theorems in the Integral Calculus.Philos. Trans. R. Soc. Lond. 158 (1868), 181-199. 10.1098/rstl.1868.0008 | 
| Reference:
             | 
[5] Cruz-Orive, L. M.: A new stereological principle for test lines in three-dimensional space.J. Microsc. 219 (2005), 18-28. MR 2149754, 10.1111/j.1365-2818.2005.01489.x | 
| Reference:
             | 
[6] Dvořák, J., Jensen, E. B.: On semiautomatic estimation of surface area.J. Microsc. 250 (2013), 142-57. 10.1111/jmi.12030 | 
| Reference:
             | 
[7] Gual-Arnau, X., Cruz-Orive, L. M.: A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications.Differ. Geom. Appl. 27 (2009), 124-128. Zbl 1168.53039, MR 2488995, 10.1016/j.difgeo.2008.06.013 | 
| Reference:
             | 
[8] Gual-Arnau, X., Cruz-Orive, L. M., Nu{ñ}o-Ballesteros, J. J.: A new rotational integral formula for intrinsic volumes in space forms.Adv. Appl. Math. 44 (2010), 298-308. Zbl 1188.53089, MR 2593313, 10.1016/j.aam.2009.09.003 | 
| Reference:
             | 
[9] Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds.J. Geom. Phys. 61 (2011), 2147-2161. Zbl 1231.53005, MR 2827115, 10.1016/j.geomphys.2011.06.013 | 
| Reference:
             | 
[10] Hirsch, M. W.: Differential Topology. Corrected reprint of the 1976 original.Graduate Texts in Mathematics 33 Springer, New York (1994). MR 1336822 | 
| Reference:
             | 
[11] Petkantschin, B.: Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im $n$-dimensionalen Raum.Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German. 10.1007/BF02940729 | 
| Reference:
             | 
[12] Ren, D.-l.: Topics in Integral Geometry.Series in Pure Mathematics 19 World Scientific, Singapore (1994). Zbl 0842.53001, MR 1336595 | 
| Reference:
             | 
[13] Santal{ó}, L. A.: Integral Geometry and Geometric Probability.Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). Zbl 1116.53050, MR 2162874 | 
| Reference:
             | 
[14] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Probability and Its Applications Springer, Berlin (2008). Zbl 1175.60003, MR 2455326 | 
| Reference:
             | 
[15] Thórisdóttir, Ó., Kiderlen, M.: The invariator principle in convex geometry.Adv. Appl. Math. 58 (2014), 63-87. Zbl 1358.52009, MR 3213744, 10.1016/j.aam.2014.02.003 | 
| Reference:
             | 
[16] Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M.: Estimating the surface area of nonconvex particles from central planar sections.J. Micrsoc. 255 (2014), 49-64. 10.1111/jmi.12136 | 
| . |