[2] Erturk, E., Corke, T. C., Gökçöl, C.: 
Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005), 747-774. 
DOI 10.1002/fld.953 | 
Zbl 1071.76038 
[4] Gartling, D. K.: 
A test problem for outflow boundary conditions---flow over a backward-facing step. Int. J. Numer. Methods Fluids 11 (1990), 953-967. 
DOI 10.1002/fld.1650110704 
[7] Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L.: 
Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method. Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. 
DOI 10.1007/BFb0086908 | 
MR 0565998 | 
Zbl 0428.76026 
[9] Gunzburger, M. D.: 
Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms. Computer Science and Scientific Computing, Academic Press, Boston (1989). 
MR 1017032 | 
Zbl 0697.76031 
[14] Huang, P., He, Y., Feng, X.: 
A new defect-correction method for the stationary Navier-Stokes equations based on local Gauss integration. Math. Methods Appl. Sci. 35 (2012), 1033-1046. 
DOI 10.1002/mma.1618 | 
MR 2931209 | 
Zbl 1246.76054 
[17] Kaya, S., Rivière, B.: 
A two-grid stabilization method for solving the steady-state Navier-Stokes equations. Numer. Methods Partial Differ. Equations 22 (2006), 728-743. 
DOI 10.1002/num.20120 | 
MR 2212234 | 
Zbl 1089.76034 
[22] Li, Y., Mei, L., Li, Y., Zhao, K.: 
A two-level variational multiscale method for incompressible flows based on two local Gauss integrations. Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. 
DOI 10.1002/num.21785 | 
MR 3116554 | 
Zbl 1277.76019 
[24] Melhem, H. G.: Finite element approximation to heat transfer through construction glass blocks. Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197.
[25] Temam, R.: 
Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). 
MR 0769654 | 
Zbl 0568.35002 
[27] Wong, K. L., Baker, A. J.: 
A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm. Int. J. Numer. Methods Fluids 38 (2002), 99-123. 
DOI 10.1002/fld.204 | 
Zbl 1009.76059