[2] Dostál, Z., Horák, D., Kučera, R.: 
Total FETI — an easier implementable variant of the FETI method for numerical solution of elliptic PDE.  Commun. Numer. Methods Eng. 22 (2006), 1155–1162. 
DOI 10.1002/cnm.881 | 
MR 2282408[3] Dostál, Z., Kozubek, T., Sadowská, M, Vondrák, V.: 
Scalable algorithms for contact problems.  AMM 36, Springer, New York, 2016. 
MR 3586594[4] Farhat, C., Lesoinne, M., Pierson, K.: 
A scalable dual-primal domain decomposition method.  Numer. Linear Algebra Appl. 7 (2000), 687–714. 
MR 1802366[5] Farhat, C., Mandel, J., Roux, F. -X.: 
Optimal convergence properties of the FETI domain decomposition method.  Comput. Methods Appl. Mech. Engrg. 115 (1994), 365–385. 
DOI 10.1016/0045-7825(94)90068-X | 
MR 1285024[8] Klawonn, A., Rheinbach, O.: 
Highly scalable parallel domain decomposition methods with an application to biomechanics.  Z. Angew. Math. Mech. 90 (2010), 5–32. 
DOI 10.1002/zamm.200900329 | 
MR 2603676[9] Marčuk, G. I.: 
Metody numerické matematiky.  Academia, Praha, 1987. 
MR 0931536[10] Říha, L., Brzobohatý, T., Markopoulos, A., Meca, O.: IT4I Espreso – fast solver for HPC users.  [online]. Dostupné z: espreso.it4i.cz
[11] Schwarz, H. A.: Über einen Grenzübergang durch alternierendes Verfahren.  Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870), 272–286.
[12] Toselli, A., Widlund, O. B.: 
Domain Decomposition Methods – Algorithms and Theory.  CM 34, Springer, Berlin, 2005. 
MR 2104179[13] Vodstrčil, P., Bouchala, J., Jarošová, M., Dostál, Z.: 
On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian.  Appl. Math. 62 (2017), 699–718. 
DOI 10.21136/AM.2017.0193-17 | 
MR 3745747