[1] Altshiller-Court, N.: 
The isosceles tetrahedron.  Modern pure solid geometry, Chelsea, New York, 1979, 94–101 and 300. 
MR 0172153[2] Brandts, J., Korotov, S., Křížek, M.: O triangulacích bez tupých úhlů.  Pokroky Mat. Fyz. Astronom. 50 (2005), 193–207.
[4] Brandts, J., Křížek, M.: Simplicial vertex-normal duality with applications to well-centered simplices.  Proc. of the 12th European Conf. on Numer. Math. and Advanced Appl., ENUMATH 2017, Voss, Nordbotten, Jan Martin, et al., (eds.), Springer, Berlin–Heidelberg, 2018, 8 pp.
[6] Edmonds, A. L., Hajja, M., Martini, H.: 
Coincidences of simplex centers and related facial structures.  Beitr. Algebra Geom. 46 (2005), 491–512. 
MR 2196932[7] Fiedler, M.: 
Über qualitative Winkeleigenschaften der Simplexe.  Czechoslovak Math. J. 7 (1957), 463–476. 
MR 0094740 | 
Zbl 0093.33602[8] Fiedler, M.: Matice a grafy v euklidovské geometrii.  Dimatia, MFF UK, Praha, 2001.
[11] Klee, V., Wagon, S.: 
Old and new unsolved problems in plane geometry and number theory.  Math. Assoc. Amer., Washington, DC, 1991. 
MR 1133201[14] Rektorys, K.: Přehled užité matematiky I.  Prometheus, Praha, 1995.
[15] Sommerville, D. M. Y.: Space-filling tetrahedra in Euclidean space.  Proc. Edinb. Math. Soc. 41 (1923), 49–57.
[16] VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A.: 
Well-centered triangulation.  SIAM J. Sci. Comput. 31 (2009/2010), 4497–4523. 
DOI 10.1137/090748214 | 
MR 2594991[17] VanderZee, E., Hirani, A. N., Guoy, D., Zharnitsky, V., Ramos, E. A.: 
Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions.  Comput. Geom. 46 (2013), 700–724. 
DOI 10.1016/j.comgeo.2012.11.003 | 
MR 3030662 | 
Zbl 1269.65021[18] Vatne, J. E.: 
The probability that a simplex is well-centered.  Appl. Math. 62 (2017), 213–223. 
MR 3661037