[3] Ben-Asher, J. Z.: 
Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, Reston 2010. 
DOI 10.2514/4.867347 
[4] Boyd, J. P.: 
Chebyshev and Fourier Spectral Methods. Second revised edition. Dover Publications, New York 2001. 
MR 1874071 
[5] Boyd, J. P., Petschek, R.: 
The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Scientific Comput. 59 (2014), 1-27. 
DOI 10.1007/s10915-013-9751-7 | 
MR 3167725 
[7] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: 
Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin 2006. 
MR 2223552 
[8] Cristiani, E., Martinon, P.: 
Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach. J. Optim. Theory Appl. 146 (2010), 321-346. 
DOI 10.1007/s10957-010-9649-6 | 
MR 2679665 
[10] Elnagar, G., Kazemi, M. A., Razzaghi, M.: 
The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40 (1995), 1793-1796. 
DOI 10.1109/9.467672 | 
MR 1354521 
[11] Fahroo, F., Ross, I. M.: 
Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dynam. 25 (2002), 160-166. 
DOI 10.2514/2.4862 
[12] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.: 
A modified pseudospectral method for solving trajectory optimization problems with singular arc. Math. Methods Appl. Sci. 40 (2017), 1783-1793. 
DOI 10.1002/mma.4097 | 
MR 3622433 
[14] Hanert, E., Piret, C.: 
A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. 
DOI 10.1137/130927292 | 
MR 3246904 
[15] Huang, J., Lin, C. F.: 
Numerical approach to computing nonlinear $ H_\infty $ control laws. J. Guid. Control Dynam. 18 (1995), 989-994. 
DOI 10.2514/3.21495 
[17] Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours. SIAM News 40 (2007).
[18] Kang, W., Gong, Q., Ross, I. M., Fahroo, F.: 
On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlin. 17 (2007), 1251-1277. 
DOI 10.1002/rnc.1166 | 
MR 2354643 
[19] Kirk, D. E.: Optimal Control Therory: An Introduction. Prentice-Hall, New Jersey 1970.
[20] Kleinman, D.: 
On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control 13 (1968), 114-115. 
DOI 10.1109/tac.1968.1098829 
[21] Lancaster, P., Rodman, L.: 
Algebraic Riccati Equations. Clarendon, Wotton-under-Edge 1995. 
MR 1367089 
[22] Lewis, F. L., Syrmos, V. L.: 
Optimal Control. John Wiley, New York 1995. 
MR 0833285 
[23] Liberzon, D.: 
Calculus of Variations and Optimal Control Theory. Princeton University Press 2012. 
MR 2895149 
[24] Nagy, Z. K., Braatz, R D.: 
Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control. 14 (2004), 411-422. 
DOI 10.1016/j.jprocont.2003.07.004 
[25] Nik, H. S., Shateyi, S.: 
Application of optimal HAM for finding feedback control of optimal control problems. Math. Probl. Eng. 2013 (2013), 1-10. 
DOI 10.1155/2013/914741 | 
MR 3043723 
[26] Orszag, S. A.: 
Comparison of pseudospectral and spectral approximation. Stud. Appl. Math. 51 (1972), 253-259. 
DOI 10.1002/sapm1972513253 
[27] Parand, K., Rezaei, A. R., Ghaderi, S. M.: 
A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. 
DOI 10.1016/j.cnsns.2010.03.022 | 
MR 2679180 
[28] Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian: 
Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation. J. Vib. Control 1 (2016), 1-16. 
MR 3785617 
[30] Ross, I. M., Fahroo, F.: 
Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dynam. 27 (2004), 397-405. 
DOI 10.2514/1.3426 
[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. 
[32] Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H.: 
Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems. Appl. Math. Model. 37 (2013), 4634-4642. 
DOI 10.1016/j.apm.2012.09.062 | 
MR 3020599 
[33] Schafer, R. D.: An Introduction to Nonassociative Algebras. Stillwater, Oklahoma 1969.
[34] Shamsi, M.: 
A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Optimal Control Appl. Methods 32 (2010), 668-680. 
DOI 10.1002/oca.967 | 
MR 2871837 
[35] Shamsi, M., Dehghan, M.: 
Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numer. Methods Partial Differential Equations 28 (2012), 74-93. 
DOI 10.1002/num.20608 | 
MR 2864659 
[36] Swaidan, W., Hussin, A.: 
Feedback control method using Haar wavelet operational matrices for solving optimal control problems. Abs. Appl. Anal. 2013 (2013), 1-8. 
DOI 10.1155/2013/240352 | 
MR 3093751 
[38] Vlassenbroeck, J., Doreen, R. Van: 
A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control 33 (1988), 333-340. 
DOI 10.1109/9.192187 | 
MR 0931197 
[39] Wang, S., Gao, F., Teo, K. L.: 
An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations. IMA J. Math. Control I. 17 (2000), 167-178. 
DOI 10.1093/imamci/17.2.167 | 
MR 1769274 
[40] Yan, Zh., Wang, J.: 
Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Informat. 8 (2012), 746-756. 
DOI 10.1109/tii.2012.2205582 
[41] Yershov, D. S., Frazzoli, E.: 
Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. Int. J. Robot. Res. 35 (2016), 565-584. 
DOI 10.1177/0278364915602958 
[42] Yong, J., Zhou, X. Y.: 
Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York 1999. 
MR 1696772