[4] Castillo J. M. F.: 
$p$-converging operators and weakly-$p$-compact operators in $L_p$-spaces. Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54. 
MR 1125690[5] Castillo J. M. F., Sanchez F.: 
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59. 
MR 1245024[6] Castillo J. M. F., Sánchez F.: 
Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces. J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. 
DOI 10.1006/jmaa.1994.1246 | 
MR 1283055[7] Cilia R., Emmanuele G.: 
Some isomorphic properties in $K(X,Y)$ and in projective tensor products. Colloq. Math. 146 (2017), no. 2, 239–252. 
DOI 10.4064/cm6184-12-2015 | 
MR 3622375[8] Chen D., Chávez-Domínguez J. A., Li L.: 
$p$-converging operators and Dunford–Pettis property of order $p$. J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066. 
DOI 10.1016/j.jmaa.2018.01.051 | 
MR 3765477[9] Defant A., Floret K.: 
Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993. 
MR 1209438[11] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: 
On the limited $p$-Schur property of some operator spaces. Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. 
MR 3758748[13] Diestel J.: 
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984. 
MR 0737004[14] Diestel J., Jarchow H., Tonge A.: 
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. 
MR 1342297 | 
Zbl 1139.47021[15] Emmanuele G.: 
A dual characterization of Banach spaces not containing $\ell_1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. 
MR 0861172[17] Ghenciu I.: 
Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products. Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. 
MR 3390279[19] Ghenciu I.: 
A note on some isomorphic properties in projective tensor products. Extracta Math. 32 (2017), no. 1, 1–24. 
MR 3726522[20] Ghenciu I.: 
A note on Dunford–Pettis like properties and complemented spaces of operators. Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222. 
MR 3815686[22] Ghenciu I., Lewis P.: 
The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324. 
DOI 10.4064/cm106-2-11 | 
MR 2283818[23] Grothedieck A.: 
Sur les applications lineaires faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129–173 (French). 
DOI 10.4153/CJM-1953-017-4 | 
MR 0058866[24] Kačena M.: 
On sequentially right Banach spaces. Extracta Math. 26 (2011), no. 1, 1–27. 
MR 2908388[26] Li L., Chen D., Chávez-Domínguez J. A.: 
Pełczyński's property ($V^*$) of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442. 
DOI 10.1002/mana.201600335 | 
MR 3767145[27] Pełczyński A.: 
On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. 
MR 0149295[28] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: 
Topological characterisation of weakly compact operators. J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. 
DOI 10.1016/j.jmaa.2006.02.066 | 
MR 2270063[29] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: 
Weakly compact operators and the strong$^*$ topology for a Banach space. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267. 
MR 2747954[31] Ryan R. A.: 
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002. 
MR 1888309 | 
Zbl 1090.46001[32] Salimi M., Moshtaghioun S. M.: 
The Gelfand–Phillips property in closed subspace of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92. 
DOI 10.15352/bjma/1313363004 | 
MR 2792501[33] Salimi M., Moshtaghioun S. M.: 
A new class of Banach spaces and its relation with some geometric properties of Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. 
MR 2910729