[1] Borel-Mathurin L.: 
Approximation properties and non-linear geometry of Banach spaces. Houston J. Math. 38 (2012), no. 4, 1135–1148. 
MR 3019026[3] Cho C.-M., Johnson W. B.: 
A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$. Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. 
MR 0774004[4] Godefroy G.: 
A survey on Lipschitz-free Banach spaces. Comment. Math. 55 (2015), no. 2, 89–118. 
MR 3518958[5] Godefroy G.: 
Extensions of Lipschitz functions and Grothendieck's bounded approximation property. North-West. Eur. J. Math. 1 (2015), 1–6. 
MR 3417417[10] Kalton N. J.: 
Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55 (2004), no. 2, 171–217. 
MR 2068975[12] Oja E.: 
On bounded approximation properties of Banach spaces. Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231. 
MR 2777497[13] Pernecka E., Smith R. J.: 
The metric approximation property and Lipschitz-free spaces over subsets of $\mathbb{R}^n$. J. Approx. Theory 199 (2015), 29–44. 
DOI 10.1016/j.jat.2015.06.003 | 
MR 3389905