[1] Alekseevsky D., Arvanitoyeorgos A.: 
Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789. 
MR 2302514[3] Berndt J., Tricerri F., Vanhecke L.: 
Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics, 1598, Springer, Berlin, 1995. 
MR 1340192[4] Deng S.: 
Homogeneous Finsler Spaces. Springer Monographs in Mathematics, Springer, New York, 2012. 
MR 2962626[5] Dušek Z.: 
Explicit geodesic graphs on some H-type groups. Proc. of the 21st Winter School Geometry and Physics, Srní, 2001, Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 69, 77–88. 
MR 1972426 | 
Zbl 1025.53019[6] Dušek Z.: 
Structure of geodesics in the flag manifold $ SO(7)/ U(3)$. Differential Geometry and Its Applications, World Sci. Publ., Hackensack, 2008, 89–98. 
DOI 10.1142/9789812790613_0009 | 
MR 2462785[7] Dušek Z.: 
Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), no. 1, 1–15. 
MR 3809649[10] Kowalski O., Nikčević S.: 
On geodesic graphs of Riemannian g.o. spaces. Arch. Math. (Basel) 73 (1999), no. 3, 223–234; Appendix: Arch. Math. (Basel) 79 (2002), no. 2, 158–160. 
DOI 10.1007/s000130050032 | 
MR 1924152[11] Kowalski O., Vanhecke L.: 
Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7) 5 (1991), no. 1, 189–246. 
MR 1110676[15] Parhizkar M., Latifi D.: 
Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension five. Glob. J. Adv. Res. Class. Mod. Geom. 7 (2018), no. 2, 92–101. 
MR 3861222[17] Szenthe J.: 
Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 383–398 (French). 
MR 0431042