[4] Blaschke W.: 
Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie III. Springer, Berlin, 1929 (German). 
MR 0015247[5] Corro A. V.: 
Generalized Weingarten surfaces of Bryant type in hyperbolic $3$-space. Mat. Comtemp. 30 (2006), 71–89. 
MR 2373504[6] Corro A. M. V., Fernandes K. V., Riveros C. M. C.: 
Generalized Weingarten surfaces of harmonic type in hyperbolic $3$-space. Differential Geom. Appl. 58 (2018), 202–226. 
DOI 10.1016/j.difgeo.2018.02.001 | 
MR 3777754[7] Dias D. G.: Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano. Ph.D. Thesis, Universidade Federal de Goiás, Goiânia, 2014 (Portuguese).
[8] Ferreira W., Roitman P.: 
Hypersurfaces in hyperbolic space associated with the conformal scalar curvature equation $\delta u+ku^{\frac{n+2}{n-2}}= 0$. Diffferential Geom. Appl. 27 (2009), no. 2, 279–295. 
DOI 10.1016/j.difgeo.2008.10.009 | 
MR 2503979[9] Gálvez J. A., Martínez A., Milán F.: 
Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity. Trans. Amer. Math. Soc. 356 (2004), no. 9, 3405–3428. 
DOI 10.1090/S0002-9947-04-03592-5 | 
MR 2055739[10] Miyagaki O. H.: Equaç oes elípticas modeladas em variedades Riemannianas: Uma introdução. Apresentado em Milênio Workshop em equaç oes elípticas, João Pessoa, 2004 (Portuguese).
[11] Obata M.: 
The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Differential Geometry 2 (1968), 217–223. 
DOI 10.4310/jdg/1214428258 | 
MR 0234388[12] Pottmann H., Grohs P., Mitra N. J.: 
Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31 (2009), no. 4, 391–419. 
DOI 10.1007/s10444-008-9076-5 | 
MR 2558260[13] Schief W. K.: 
On Laplace–Darboux-type sequences of generalized Weingarten surfaces. J. Math. Phys. 41 (2000), no. 9, 6566–6599. 
DOI 10.1063/1.1286980 | 
MR 1779663