[1] Aghaie, S., Khanmohammadi, S., Moghadam-Fard, H., Samadi, F.: 
Adaptive vision-based control of robot manipulators using the interpolating polynomial. Trans. Inst. Meas. Control 36 (2014), 6, 837-844. 
DOI 10.1177/0142331214523307 
[2] Bdiwi, M., Winkler, A., Suchy, J., Zschocke, G.: 
Traded and shared vision-force robot control for improved impact control. In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159. 
DOI 10.1109/ssd.2011.5981425 
[3] Carelli, R., Oliva, E., Soria, C., Nasisi, O.: 
Combined force and visual control of an industrial robot. Robotica 22 (2004), 2, 163-171. 
DOI 10.1017/s0263574703005423 
[4] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: 
On explicit force regulation with active velocity damping for robot manipulators. Automatika 56(4) (2015), 478-490. 
DOI 10.1080/00051144.2015.11828661 
[5] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: 
On stiffness regulators with dissipative injection for robot manipulators. Int. J. Adv. Rob. Syst. 12 (2015), 6, 65. 
DOI 10.5772/60054 
[6] Chiaverini, S., Sciavicco, L.: 
The parallel approach to force/position control of robotic manipulators. IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373. 
DOI 10.1109/70.246048 
[8] Hogan, N.: 
Stable execution of contact tasks using impedance control. In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054. 
DOI 10.1109/robot.1987.1087854 
[9] Huang, Y., Zhang, X., Chen, X., Ota, J.: 
Vision-guided peg-in-hole assembly by baxter robot. Adv. Mech. Eng. 9 (2017), 12, 168781401774807. 
DOI 10.1177/1687814017748078 
[10] Hutchinson, S., Hager, G. D., Corke, P.I.: 
A tutorial on visual servo control. IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670. 
DOI 10.1109/70.538972 
[11] Kelly, R.: 
Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766. 
DOI 10.1109/70.538980 
[12] Kelly, R., Santibáñez-Dávila, V., Loría-Perez, J. A.: Control of Robot Manipulators in Joint Space. Springer-Verlag, London 2006.
[14] Lippiello, V., Siciliano, B., Villani, L.: 
A position-based visual impedance control for robot manipulators. In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073. 
DOI 10.1109/robot.2007.363626 
[15] Lippiello, V., Siciliano, B., Villani, L.: 
Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Trans. Rob. 23 (2007), 1, 73-86. 
DOI 10.1109/tro.2006.886832 
[16] Long, P., Khalil, W., Martinet, P.: 
Robotic cutting of soft materials using force control and image moments. In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479. 
DOI 10.1109/icarcv.2014.7064351 
[17] Mezouar, Y., Prats, M., Martinet, P.: External hybrid vision/force control. In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175.
[18] Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Ruiz-Sánchez, F.: 
A novel force-velocity field for object manipulation with a model-free cooperative controller. Trans. Inst. Meas. Control 41 (2019), 2, 573-581. 
DOI 10.1177/0142331218762272 
[19] Mut, V., Nasisi, O., Carelli, R., Kuchen, B.: 
Tracking robust impedance robot control with visual feedback. In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74. 
DOI 10.1016/s1474-6670(17)37907-7 
[20] Nammoto, T., Kosuge, K., Hashimoto, K.: 
Model-based compliant motion control scheme for assembly tasks using vision and force information. In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953. 
DOI 10.1109/coase.2013.6653912 
[21] Nelson, B. J., Khosla, P. K.: 
Force and vision resolvability for assimilating disparate sensory feedback. IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731. 
DOI 10.1109/70.538976 
[22] Ortenzi, V., Marturi, N., Mistry, M., Kuo, J., Stolkin, R.: 
Vision-based framework to estimate robot configuration and kinematic constraints. IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412. 
DOI 10.1109/tmech.2018.2865758 
[23] Prats, M., Martinet, P., Pobil, A. P. Del, Lee, S.: 
Robotic execution of everyday tasks by means of external vision/force control. Intell. Serv. Robot. 1 (2008), 3, 253-266. 
DOI 10.1007/s11370-007-0008-x 
[24] Rodriguez-Angeles, A., Vazquez-Chavez, L.F.: 
Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems. Kybernetika 54 (2018), 1, 135-154. 
DOI 10.14736/kyb-2018-1-0135 | 
MR 3780960 
[25] Takegaki, M., Arimoto, S.: 
A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. 
DOI 10.1115/1.3139651 | 
Zbl 0473.93012 
[26] Wang, H., Xie, Y.: 
Adaptive jacobian position/force tracking control of free-flying manipulators. Rob. Auton. Syst. 57 (2009), 2, 173-181. 
DOI 10.1016/j.robot.2008.05.003 
[27] Yu, L., Fei, S., Huang, J., Li, Y., Yang, G., Sun, L.: 
Robust neural network control of robotic manipulators via switching strategy. Kybernetika 51 (2015), 2, 309-320. 
DOI 10.14736/kyb-2015-2-0309 | 
MR 3350564 
[28] Yüksel, T.: 
An intelligent visual servo control system for quadrotors. Trans. Inst. Meas. Control 41 (2019), 1, 3-13. 
DOI 10.1177/0142331217751599