[1] Ahlswede, R., Körner, J.: 
On common information and related characteristics of correlated information sources. Preprint, 7th Prague Conference on Information Theory, 1974. 
MR 2495193 
[2] Ahlswede, R., Körner, J.: 
On common information and related characteristics of correlated information sources. In: General Theory of Information Transfer and Combinatorics (R. Ahlswede et al., eds.), Lecture Notes in Computer Science 4123, Springer, Berlin, Heidelberg, 2006. 
MR 2495193 
[3] Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: 
Quantifying unique information. Entropy 16 (2014), 4, 2161-2183. 
DOI 10.3390/e16042161 | 
MR 3195286 
[5] Dougherty, R., Freiling, Ch., Zeger, K.: 
Six new non-shannon information inequalities. In: 2006 IEEE International Symposium on Information Theory, IEEE, 2006, pp. 233-236. 
DOI 10.1109/isit.2006.261840 | 
MR 2321860 
[6] Dougherty, R., Freiling, Ch., Zeger, K.: 
Non-Shannon information inequalities in four random variables. arXiv preprint arXiv:1104.3602, 2011. 
MR 2321860 
[7] Gromov, M.: In a search for a structure, part 1: On entropy. 
[8] Kovačević, M., Stanojević, I., Šenk, V.: 
On the hardness of entropy minimization and related problems. In: 2012 IEEE Information Theory Workshop, IEEE, 2012, pp. 512-516. 
DOI 10.3390/e22040407 
[9] Leinster, T.: 
Basic Category Theory, volume 143.  
MR 3307165 
[10] Matúš, F.: 
Probabilistic conditional independence structures and matroid theory: background 1. Int. J. General System 22 (1993), 2, 185-196. 
DOI 10.1080/03081079308935205 
[12] Matúš, F.: 
Infinitely many information inequalities. In: IEEE International Symposium on Information Theory, ISIT 2007, IEEE, pp. 41-44. 
DOI 10.1109/isit.2007.4557201 
[15] Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N.: 
A new class of non-Shannon-type inequalities for entropies. Comm. Inform. Syst. 2 (2002), 2, 147-166. 
DOI 10.4310/cis.2002.v2.n2.a3 | 
MR 1958013 
[17] Matveev, R., Portegies, J. W.: Arrow Contraction and Expansion in Tropical Diagrams. arXiv e-prints, page arXiv:1905.05597, 2019.
[18] Matveev, R., Portegies, J. W.: Conditioning in tropical probability theory. arXiv e-prints, page arXiv:1905.05596, 2019.
[19] Matveev, R., Portegies, J. W.: 
Tropical diagrams of probability spaces. arXiv e-prints, page arXiv:1905.04375, 2019. 
MR 4117580 
[21] Vidyasagar, M.: 
A metric between probability distributions on finite sets of different cardinalities and applications to order reduction. IEEE Trans. Automat. Control 57 (2012), 10, 2464-2477. 
DOI 10.1109/tac.2012.2188423 | 
MR 2991650 
[24] Zhang, Z., Yeung, R. W.: 
A non-shannon-type conditional inequality of information quantities. IEEE Trans. Inform. Theory 43 (1997), 6, 1982-1986. 
DOI 10.1109/18.641561 | 
MR 1481054 
[25] Zhang, Z., Yeung, R. W.: 
On characterization of entropy function via information inequalities. IEEE Trans. Inform. Theory 44 (1998), 4, 1440-1452. 
DOI 10.1109/18.681320 | 
MR 1665794