[1] Anderson, T. W.: 
Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices. In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24. 
MR 0277057 
[2] Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M.: 
Toric degenerations of Gr(2,n) and Gr(3,6) via plabic graphs. Ann. Combinator. 22 (2018), 3, 491-512. 
DOI 10.1007/s00026-018-0395-z | 
MR 3845745 
[3] Buneman, P.: The recovery of trees from measures of dissimilarity. In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395.
[8] Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from continuous characters. Amer. J. Human Genetics 25 (1973), 5, 471-492.
[9] Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. 
[11] Maclagan, D., Sturmfels, B.: 
Introduction to Tropical Geometry. American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. 
DOI 10.1090/gsm/161 | 
MR 3287221 
[12] Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P.: 
Exponential varieties. Proc. London Math. Soc. (3), 112 (2016), 1, 27-56. 
DOI 10.1112/plms/pdv066 | 
MR 3458144 
[15] Sullivant, S., Talaska, K., Draisma, J.: 
Trek separation for Gaussian graphical models. Ann. Stat. 38 (2010), 3, 1665-1685. 
DOI 10.1214/09-aos760 | 
MR 2662356 
[16] Varga, R. S., Nabben, R.: 
On symmetric ultrametric matrices. Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199. 
DOI 10.1515/9783110857658.193 | 
MR 1244160 
[17] Zwiernik, P., Uhler, C., Richards, D.: 
Maximum likelihood estimation for linear Gaussian covariance models. J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292. 
DOI 10.1111/rssb.12217 | 
MR 3689318