Previous |  Up |  Next

Article

Title: On the sequences of $(q,k)$-generalized Fibonacci numbers (English)
Author: Lelis, Jean
Author: Freitas, Gersica
Author: Kreutz, Alessandra
Author: Silva, Elaine
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 445-458
Summary lang: English
.
Category: math
.
Summary: We consider a new family of recurrence sequences, the $(q,k)$-generalized Fibonacci numbers. These sequences naturally extend the well-known sequences of $k$-generalized Fibonacci numbers and generalized $k$-order Pell numbers. Further, we obtain the Binet formula and study the asymptotic behavior of the dominant root of the characteristic equation. The proof methods exploit pairs of characteristic polynomials which allow several auxiliary results. (English)
Keyword: generalized Fibonacci number
Keyword: generalized Pell number
Keyword: recurrence sequence
Keyword: Binet formula
MSC: 11B37
MSC: 11B39
DOI: 10.21136/MB.2024.0036-23
.
Date available: 2025-09-26T14:42:09Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153086
.
Reference: [1] Boyd, D. W.: Linear recurrence relations for some generalized Pisot sequences.Advances in Number Theory Clarendon Press, New York (1993), 333-340. Zbl 0790.11012, MR 1368431, 10.1093/oso/9780198536680.003.0025
Reference: [2] Brauer, A.: On algebraic equations with all but one root in the interior of the unit circle.Math. Nachr. 4 (1951), 250-257. Zbl 0042.01501, MR 0041975, 10.1002/mana.3210040123
Reference: [3] Bravo, J. J., Gómez, C. A., Herrera, J. L.: On the intersection of $k$-Fibonacci and Pell numbers.Bull. Korean Math. Soc. 56 (2019), 535-547. Zbl 1437.11024, MR 3936488, 10.4134/BKMS.b180417
Reference: [4] Bravo, J. J., Herrera, J. L., Luca, F.: Common values of generalized Fibonacci and Pell sequences.J. Number Theory 226 (2021), 51-71. Zbl 1471.11049, MR 4239716, 10.1016/j.jnt.2021.03.001
Reference: [5] Bravo, J. J., Herrera, J. L., Luca, F.: On a generalization of the Pell sequence.Math. Bohem. 146 (2021), 199-213. Zbl 1499.11049, MR 4261368, 10.21136/MB.2020.0098-19
Reference: [6] Bravo, J. J., Herrera, J. L., Ramírez, J. L.: Combinatorial interpretation of generalized Pell numbers.J. Integer Seq. 23 (2020), Article ID 20.2.1, 15 pages. Zbl 1447.11023, MR 4072554
Reference: [7] Bravo, J. J., Luca, F.: Coincidences in generalized Fibonacci sequences.J. Number Theory 133 (2013), 2121-2137. Zbl 1272.11028, MR 3027957, 10.1016/j.jnt.2012.11.006
Reference: [8] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. Debr. 82 (2013), 623-639. Zbl 1274.11035, MR 3066434, 10.5486/PMD.2013.5390
Reference: [9] Catarino, P.: On some identities for $k$-Fibonacci sequence.Int. J. Contemp. Math. Sci. 9 (2014), 37-42. 10.12988/ijcms.2014.311120
Reference: [10] Dresden, G. P. B., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers.J. Integer Seq. 17 (2014), Article ID 14.4.7, 19 pages. Zbl 1360.11031, MR 3181762
Reference: [11] Everest, G., Poorten, A. van der, Shparlinski, I., Ward, T.: Recurrence Sequences.Mathematical Surveys and Monographs 104. AMS, Providence (2003). Zbl 1033.11006, MR 1990179, 10.1090/surv/104
Reference: [12] Falcón, S., Ángel, P.: On the Fibonacci $k$-numbers.Chaos Solitons Fractals 32 (2007), 1615-1624. Zbl 1158.11306, MR 2299058, 10.1016/j.chaos.2006.09.022
Reference: [13] Hendel, R. J.: A method for uniformly proving a family of identities.Fibonacci Q. 60 (2022), 151-163. Zbl 1502.11025, MR 4453994, 10.1080/00150517.2022.12427488
Reference: [14] Kalman, D.: Generalized Fibonacci numbers by matrix methods.Fibonacci Q. 20 (1982), 73-76. Zbl 0472.10016, MR 0660765, 10.1080/00150517.1982.12430034
Reference: [15] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers.Taiwanese J. Math. 10 (2006), 1661-1670. Zbl 1123.11005, MR 2275152, 10.11650/twjm/1500404581
Reference: [16] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Vol. 1.John Wiley & Sons, New York (2001). Zbl 0984.11010, MR 1855020, 10.1002/9781118033067
Reference: [17] Miller, M. D.: On generalized Fibonacci numbers.Am. Math. Mon. 78 (1971), 1108-1109. Zbl 0236.30004, MR 1536552, 10.1080/00029890.1971.11992952
Reference: [18] Sloane, N. J. A.: The on-line encyclopedia of integer sequences.Available at https://oeis.org/.
Reference: [19] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences.Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. Zbl 1390.11042, MR 3084191, 10.1186/1687-1847-2013-189
.

Files

Files Size Format View
MathBohem_150-2025-3_9.pdf 224.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo