Previous |  Up |  Next

Article

Keywords:
multi-argument specialization semilattice; closure semilattice; closure space; universal extension
Summary:
If $X$ is a closure space with closure $K$, we consider the semilattice $(\mathcal P(X), \cup )$ endowed with a further relation $ x \sqsubseteq \{ y_1, y_2, \dots , y_n\} $ between elements of $\mathcal P(X)$ and finite subsets of $\mathcal P(X)$, whose interpretation is $x \subseteq Ky_1 \cup Ky_2 \cup \dots \cup Ky_n $. \endgraf We present axioms for such multi-argument specialization semilattices and show that this list of axioms is sound and complete for substructures of closure spaces, namely, a model satisfies the axioms if and only if it can be embedded into the structure associated to a closure space as in the previous sentence. As a main tool for the proof, we provide a canonical embedding of a multi-argument specialization semilattice into (the structure associated to) a closure semilattice.
References:
[1] Blass, A.: Combinatorial cardinal characteristics of the continuum. Handbook of Set Theory Springer, Dordrecht (2010), 395-489. DOI 10.1007/978-1-4020-5764-9_7 | MR 2768685 | Zbl 1198.03058
[2] Blyth, T. S.: Lattices and Ordered Algebraic Structures. Universitext. Springer, London (2005). DOI 10.1007/b139095 | MR 2126425 | Zbl 1073.06001
[3] Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets: Concepts, Results and Uses. Encyclopedia of Mathematics and its Applications 144. Cambridge University Press, Cambridge (2012). DOI 10.1017/CBO9781139005135 | MR 2919901 | Zbl 1238.06001
[4] Čech, E.: Topological Spaces. Publishing House of the Czechoslovak Academy of Sciences, Prague; John Wiley & Sons, London (1966). MR 0211373 | Zbl 0141.39401
[5] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann Verlag, Lemgo (2007). MR 2326262 | Zbl 1117.06001
[6] Császár, Á.: Generalized topology, generalized continuity. Acta Math. Hung. 96 (2002), 351-357. DOI 10.1023/A:1019713018007 | MR 1922680 | Zbl 1006.54003
[7] Erné, M.: Closure. Beyond Topology Contemporary Mathematics 486. AMS, Providence (2009), 163-238. DOI 10.1090/conm/486 | MR 2521945 | Zbl 1192.54001
[8] Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D. S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications 93. Cambridge University Press, Cambridge (2003). DOI 10.1017/CBO9780511542725 | MR 1975381 | Zbl 1088.06001
[9] Harzheim, E.: Ordered Sets. Advances in Mathematics 7. Springer, New York (2005). DOI 10.1007/b104891 | MR 2127991 | Zbl 1072.06001
[10] Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications 42. Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9780511551574 | MR 1221741 | Zbl 0789.03031
[11] Jansana, R.: Propositional consequence relations and algebraic logic. The Stanford Encyclopedia of Philosophy (Spring 2011 Edition) Stanford University, Stanford (2011), Available at \brokenlink { https://plato.stanford.edu/archives/spr2011/entries/{consequence-algebraic/}}\kern0pt
[12] Kronheimer, E. H., Penrose, R.: On the structure of causal spaces. Proc. Camb. Philos. Soc. 63 (1967), 481-501. DOI 10.1017/S030500410004144X | MR 0208982 | Zbl 0148.46502
[13] Lipparini, P.: Universal extensions of specialization semilattices. Categ. Gen. Algebr. Struct. Appl. 17 (2022), 101-116. DOI 10.52547/cgasa.2022.102467 | MR 4475652 | Zbl 07626867
[14] Lipparini, P.: Preservation of superamalgamation by expansions. Available at https://arxiv.org/abs/2203.10570v3 (2023), 42 pages. DOI 10.48550/arXiv.2203.10570
[15] Lipparini, P.: Universal specialization semilattices. Quaest. Math. 46 (2023), 2163-2176. DOI 10.2989/16073606.2022.2126805 | MR 4644164 | Zbl 07745971
[16] Lipparini, P.: Semilattices with a congruence. Available at https://arxiv.org/abs/2407.08446 (2024), 9 pages. DOI 10.48550/arXiv.2407.08446
[17] Lipparini, P.: A model theory of topology. (to appear) in Stud. Logica. DOI 10.1007/s11225-024-10107-3
[18] McKinsey, J. C. C., Tarski, A.: The algebra of topology. Ann. Math. (2) 45 (1944), 141-191. DOI 10.2307/1969080 | MR 0009842 | Zbl 0060.06206
[19] Mynard, F., Pearl, E., eds.: Beyond Topology. Contemporary Mathematics 486. AMS, Providence (2009). DOI 10.1090/conm/486 | MR 2555999 | Zbl 1165.54001
[20] Nagata, J.: Modern General Topology. North-Holland Mathematical Library 33. North-Holland, Amsterdam (1985). MR 0831659 | Zbl 0598.54001
[21] Ranzato, F.: Closures on CPOs form complete lattices. Inf. Comput. 152 (1999), 236-249. DOI 10.1006/inco.1999.2801 | MR 1707895 | Zbl 1004.06007
[22] Rump, W.: Multi-posets in algebraic logic, group theory, and non-commutative topology. Ann. Pure Appl. Logic 167 (2016), 1139-1160. DOI 10.1016/j.apal.2016.05.001 | MR 3541004 | Zbl 1377.08002
[23] Scowcroft, P.: Existentially closed closure algebras. Notre Dame J. Formal Logic 61 (2020), 623-661. DOI 10.1215/00294527-2020-0026 | MR 4200354 | Zbl 1486.03067
[24] Servi, M.: Algebre di Fréchet: Una classe di algebre booleane con operatore. Rend. Circ. Mat. Palermo, II. Ser. 14 (1965), 335-366 Italian. DOI 10.1007/BF02844036 | MR 0210059 | Zbl 0158.40902
[25] Vickers, S.: Topology Via Logic. Cambridge Tracts in Theoretical Computer Science 5. Cambridge University Press, Cambridge (1989). MR 1002193 | Zbl 0668.54001
Partner of
EuDML logo