[1] Bertrand, J.: Mémoire sur la théorie des courbes à double courbure. J. Math. Pures Appl. 15 (1850), 332-350 French.
[4] Darboux, G.: Leçons sur la théorie générale des surfaces I, II, III, IV. Gauthier-Villars, Paris (1896), French.
[5] Dede, M.:
A new representation of tubular surfaces. Houston J. Math. 45 (2019), 707-720.
MR 4033898 |
Zbl 1429.53003
[6] Dede, M., Ekici, C., Güven, A.: Directional Bertrand curves. Gazi Univ. J. Sci. 31 (2018), 202-211.
[8] Doğan, F., Yaylı, Y.: Tubes with Darboux frame. Int. J. Contemp. Math. Sci. 7 (2012), 751-758.
[9] Gürbüz, N. Ertuğ:
The evolution of an electric field with respect to the type-1 PAF and the PAFORS frames in $\Bbb{R}_1^3$. Optik 250 (2022), Article ID 168285, 10 pages.
DOI 10.1016/j.ijleo.2021.168285
[10] Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17 (1852), 437-447 French.
[13] Kazaz, M., Uğurlu, H. H., Ãnder, M., Oral, S.:
Bertrand partner $D$-curves in the Euclidean 3-space $E^3$. Afyon Kocatepe Univ. J. Sci. Eng. 16 (2016), 76-83.
DOI 10.5578/fmbd.25270
[16] Ãzen, K. E., Tosun, M.: A new moving frame for trajectories on regular surfaces. Ikonion J. Math. 3 (2021), 20-34.
[17] Ãzen, K. E., Tosun, M.:
A new moving frame for trajectories with non-vanishing angular momentum. J. Math. Sci. Model. 4 (2021), 7-18.
DOI 10.33187/jmsm.869698
[18] Ãzen, K. E., Tosun, M.:
Some characterizations on geodesic, asymptotic and slant helical trajectories according to PAFORS. Maltepe J. Math. 3 (2021), 74-90.
DOI 10.47087/mjm.926078
[19] Ãzen, K. E., Tosun, M.: Trajectories generated by special Smarandache curves according to positional adapted frame. Karamanoğlu Mehmetbey Univ. J. Eng. Natural Sci. 3 (2021), 15-23.
[20] Papaioannou, S. G., Kiritsis, D.:
An application of Bertrand curves and surfaces to CADCAM. Comput.-Aided Des. 17 (1985), 348-352.
DOI 10.1016/0010-4485(85)90025-9
[22] Serret, J.-A.: Sur quelques formules relatives à la théorie des courbes à double courbure. J. Math. Pures Appl. 16 (1851), 193-207 French.
[25] Solouma, E. M.:
Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF. Bull. Math. Anal. Appl. 13 (2021), 14-30.
DOI 10.54671/bmaa-2021-4-2 |
MR 4359268 |
Zbl 1507.53005
[27] Yerlikaya, F., Karaahmetoğlu, S., Aydemir, İ.:
On the Bertrand $B$-pair curve in 3-dimensional Euclidean space. J. Sci. Arts 36 (2016), 215-224.
MR 3555924