| Title:
|
Bertrand partner trajectories related to PAFORS (English) |
| Author:
|
İşbilir, Zehra |
| Author:
|
Özen, Kahraman Esen |
| Author:
|
Tosun, Murat |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0011-4642 |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
150 |
| Issue:
|
4 |
| Year:
|
2025 |
| Pages:
|
561-571 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
In this study, we consider the concept of Bertrand partner trajectories related to Positional Adapted Frame on Regular Surfaces (shortly PAFORS) for the particles moving on the different regular surfaces in Euclidean 3-space. The relations between the PAFORS elements of the aforesaid trajectories are given. Also, the relations between Darboux basis vectors of them are found. Furthermore, some characterizations are given for some special cases of these trajectories with the aid of their PAFORS elements. (English) |
| Keyword:
|
kinematics of a particle |
| Keyword:
|
Bertrand curve |
| Keyword:
|
PAFORS |
| MSC:
|
53A04 |
| MSC:
|
57R25 |
| MSC:
|
70B05 |
| DOI:
|
10.21136/MB.2025.0020-24 |
| . |
| Date available:
|
2025-11-07T19:23:26Z |
| Last updated:
|
2025-11-16 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153162 |
| . |
| Reference:
|
[1] Bertrand, J.: Mémoire sur la théorie des courbes à double courbure.J. Math. Pures Appl. 15 (1850), 332-350 French. |
| Reference:
|
[2] Bishop, R. L.: There is more than one way to frame a curve.Am. Math. Mon. 82 (1975), 246-251. Zbl 0298.53001, MR 0370377, 10.1080/00029890.1975.11993807 |
| Reference:
|
[3] Burke, J. F.: Bertrand curves associated with a pair of curves.Math. Mag. 34 (1960), 60-62. MR 1571029, 10.2307/2687860 |
| Reference:
|
[4] Darboux, G.: Leçons sur la théorie générale des surfaces I, II, III, IV.Gauthier-Villars, Paris (1896), French. |
| Reference:
|
[5] Dede, M.: A new representation of tubular surfaces.Houston J. Math. 45 (2019), 707-720. Zbl 1429.53003, MR 4033898 |
| Reference:
|
[6] Dede, M., Ekici, C., Güven, A.: Directional Bertrand curves.Gazi Univ. J. Sci. 31 (2018), 202-211. |
| Reference:
|
[7] Dede, M., Ekici, C., Tozak, H.: Directional tubular surfaces.Int. J. Algebra 9 (2015), 527-535. 10.12988/ija.2015.51274 |
| Reference:
|
[8] Doğan, F., Yaylı, Y.: Tubes with Darboux frame.Int. J. Contemp. Math. Sci. 7 (2012), 751-758. |
| Reference:
|
[9] Gürbüz, N. Ertuğ: The evolution of an electric field with respect to the type-1 PAF and the PAFORS frames in $\Bbb{R}_1^3$.Optik 250 (2022), Article ID 168285, 10 pages. 10.1016/j.ijleo.2021.168285 |
| Reference:
|
[10] Frenet, F.: Sur les courbes à double courbure.J. Math. Pures Appl. 17 (1852), 437-447 French. |
| Reference:
|
[11] Görgülü, A., Ã zdamar, E.: A generalization of the Bertrand curves as general inclined curves in $E^n$.Commun. Fac. Sci. Univ. Ankara, Sér. A1 35 (1986), 53-60. Zbl 0628.53004, MR 0904535, 10.1501/Commua1_0000000254 |
| Reference:
|
[12] Izumiya, S., Takeuchi, N.: Generic properties of helices and Bertrand curves.J. Geom. 74 (2002), 97-109. Zbl 1031.53007, MR 1940593, 10.1007/PL00012543 |
| Reference:
|
[13] Kazaz, M., Uğurlu, H. H., Ã nder, M., Oral, S.: Bertrand partner $D$-curves in the Euclidean 3-space $E^3$.Afyon Kocatepe Univ. J. Sci. Eng. 16 (2016), 76-83. 10.5578/fmbd.25270 |
| Reference:
|
[14] Keskin, Ã ., Yaylı, Y.: An application of $N$-Bishop frame to spherical images for direction curves.Int. J. Geom. Methods Mod. Phys. 14 (2017), Article ID 1750162, 21 pages. Zbl 1380.53010, MR 3714852, 10.1142/S0219887817501626 |
| Reference:
|
[15] O'Neil, B.: Elementary Differential Geometry.Academic Press, New York (1966). Zbl 0971.53500, MR 0203595 |
| Reference:
|
[16] Ã zen, K. E., Tosun, M.: A new moving frame for trajectories on regular surfaces.Ikonion J. Math. 3 (2021), 20-34. |
| Reference:
|
[17] Ã zen, K. E., Tosun, M.: A new moving frame for trajectories with non-vanishing angular momentum.J. Math. Sci. Model. 4 (2021), 7-18. 10.33187/jmsm.869698 |
| Reference:
|
[18] Ã zen, K. E., Tosun, M.: Some characterizations on geodesic, asymptotic and slant helical trajectories according to PAFORS.Maltepe J. Math. 3 (2021), 74-90. 10.47087/mjm.926078 |
| Reference:
|
[19] Ã zen, K. E., Tosun, M.: Trajectories generated by special Smarandache curves according to positional adapted frame.Karamanoğlu Mehmetbey Univ. J. Eng. Natural Sci. 3 (2021), 15-23. |
| Reference:
|
[20] Papaioannou, S. G., Kiritsis, D.: An application of Bertrand curves and surfaces to CADCAM.Comput.-Aided Des. 17 (1985), 348-352. 10.1016/0010-4485(85)90025-9 |
| Reference:
|
[21] Scofield, P. D.: Curves of constant precession.Am. Math. Mon. 102 (1995), 531-537. Zbl 0881.53002, MR 1336639, 10.1080/00029890.1995.12004613 |
| Reference:
|
[22] Serret, J.-A.: Sur quelques formules relatives à la théorie des courbes à double courbure.J. Math. Pures Appl. 16 (1851), 193-207 French. |
| Reference:
|
[23] Shifrin, T.: Differential Geometry: A First Course in Curves and Surfaces, Preliminary Version.University of Georgia, Athens (2008), Available at \brokenlink {https://math.franklin.{uga.edu/sites/default/files/inline-files/ShifrinDiffGeo.pdf}}\kern0pt. |
| Reference:
|
[24] Soliman, M. A., Abdel-All, N. H., Hussien, R. A., Youssef, T.: Evolution of space curves using type-3 Bishop frame.Casp. J. Math. Sci. 8 (2019), 58-73. Zbl 1438.53013, MR 4483785, 10.22080/cjms.2018.14455.1344 |
| Reference:
|
[25] Solouma, E. M.: Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF.Bull. Math. Anal. Appl. 13 (2021), 14-30. Zbl 1507.53005, MR 4359268, 10.54671/bmaa-2021-4-2 |
| Reference:
|
[26] Whittemore, J. K.: Bertrand curves and helices.Duke Math. J. 6 (1940), 235-245. Zbl 0026.35002, MR 0002227, 10.1215/S0012-7094-40-00618-4 |
| Reference:
|
[27] Yerlikaya, F., Karaahmetoğlu, S., Aydemir, İ.: On the Bertrand $B$-pair curve in 3-dimensional Euclidean space.J. Sci. Arts 36 (2016), 215-224. MR 3555924 |
| Reference:
|
[28] Yılmaz, S., Turgut, M.: A new version of Bishop frame and an application to spherical images.J. Math. Anal. Appl. 371 (2010), 764-776. Zbl 1207.53003, MR 2670154, 10.1016/j.jmaa.2010.06.012 |
| . |