| Title:
|
Coloring of graph of ring with respect to idempotents (English) |
| Author:
|
Patil, Avinash |
| Author:
|
Patil, Dipika |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0011-4642 |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
150 |
| Issue:
|
4 |
| Year:
|
2025 |
| Pages:
|
573-582 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $R$ be a ring with nonzero identity. A graph $G_{{\rm Id}}(R)$ of $R$ with respect to idempotents of $R$ has elements of $R$ as vertices and distinct vertices $x$, $y$ are adjacent if and only if $x + y$ is an idempotent of $R$. In this paper, we prove that $G_{{\rm Id}}(R)$ is weakly perfect and provide a condition for the perfectness of the same. Further, we characterize finite abelian rings for which the complement of $G_{{\rm Id}}(R)$ is connected. (English) |
| Keyword:
|
idempotent graph |
| Keyword:
|
weak perfect graph |
| Keyword:
|
zero-divisor graph |
| MSC:
|
05C15 |
| MSC:
|
05C17 |
| MSC:
|
05C25 |
| DOI:
|
10.21136/MB.2025.0024-24 |
| . |
| Date available:
|
2025-11-07T19:26:52Z |
| Last updated:
|
2025-11-16 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153163 |
| . |
| Reference:
|
[1] Abian, A.: Direct product decomposition of commutative semisimple rings.Proc. Am. Math. Soc. 24 (1970), 502-507. Zbl 0207.05002, MR 0258815, 10.1090/S0002-9939-1970-0258815-X |
| Reference:
|
[2] Akbari, S., Habibi, M., Majidinya, A., Manaviyat, R.: On the idempotent graph of a ring.J. Algebra Appl. 12 (2013), Article ID 1350003, 14 pages. Zbl 1266.05051, MR 3063442, 10.1142/S0219498813500035 |
| Reference:
|
[3] Anderson, D. F., Badawi, A.: Von Neumann regular and related elements in commutative rings.Algebra Colloq. 19 (2012), 1017-1040. Zbl 1294.13029, MR 3073393, 10.1142/S1005386712000831 |
| Reference:
|
[4] Anderson, D. F., LaGrange, J. D.: Abian's poset and the ordered monoid of annihilator classes in a reduced commutative rings.J. Algebra Appl. 13 (2014), Article ID 1450070, 18 pages. Zbl 1317.06020, MR 3225137, 10.1142/S0219498814500704 |
| Reference:
|
[5] Anderson, D. D., Naseer, M.: Beck's coloring of a commutative ring.J. Algebra 159 (1993), 500-514. Zbl 0798.05067, MR 1231228, 10.1006/jabr.1993.1171 |
| Reference:
|
[6] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5 |
| Reference:
|
[7] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.Ann. Math. (2) 164 (2006), 51-229. Zbl 1112.05042, MR 2233847, 10.4007/annals.2006.164.51 |
| Reference:
|
[8] Cvetko-Vah, K., Dolžan, D.: Indecomposability graphs of rings.Bull. Aust. Math. Soc. 77 (2008), 151-159. Zbl 1194.16034, MR 2411874, 10.1017/S0004972708000154 |
| Reference:
|
[9] Han, J., Park, S.: Additive set of idempotents in rings.Commun. Algebra 40 (2012), 3551-3557. Zbl 1256.16024, MR 2981152, 10.1080/00927872.2011.591862 |
| Reference:
|
[10] Patil, A., Momale, P. S.: Idempotent graphs, weak perfectness, and zero-divisor graphs.Soft Comput. 25 (2021), 10083-10088. Zbl 1498.05128, 10.1007/s00500-021-05982-0 |
| Reference:
|
[11] Patil, A., Waphare, B. N., Joshi, V.: Perfect zero-divisor graphs.Discrete Math. 340 (2017), 740-745. Zbl 1355.05115, MR 3603554, 10.1016/j.disc.2016.11.027 |
| Reference:
|
[12] Razaghi, S., Sahebi, S.: A graph with respect to idempotents of a ring.J. Algebra Appl. 20 (2021), Article ID 2150105, 8 pages \99999DOI99999 10.1142/S021949882150105X . Zbl 1496.16037, MR 4256354, 10.1142/S021949882150105X |
| . |