Previous |  Up |  Next

Article

Title: Coloring of graph of ring with respect to idempotents (English)
Author: Patil, Avinash
Author: Patil, Dipika
Language: English
Journal: Mathematica Bohemica
ISSN: 0011-4642
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 4
Year: 2025
Pages: 573-582
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring with nonzero identity. A graph $G_{{\rm Id}}(R)$ of $R$ with respect to idempotents of $R$ has elements of $R$ as vertices and distinct vertices $x$, $y$ are adjacent if and only if $x + y$ is an idempotent of $R$. In this paper, we prove that $G_{{\rm Id}}(R)$ is weakly perfect and provide a condition for the perfectness of the same. Further, we characterize finite abelian rings for which the complement of $G_{{\rm Id}}(R)$ is connected. (English)
Keyword: idempotent graph
Keyword: weak perfect graph
Keyword: zero-divisor graph
MSC: 05C15
MSC: 05C17
MSC: 05C25
DOI: 10.21136/MB.2025.0024-24
.
Date available: 2025-11-07T19:26:52Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153163
.
Reference: [1] Abian, A.: Direct product decomposition of commutative semisimple rings.Proc. Am. Math. Soc. 24 (1970), 502-507. Zbl 0207.05002, MR 0258815, 10.1090/S0002-9939-1970-0258815-X
Reference: [2] Akbari, S., Habibi, M., Majidinya, A., Manaviyat, R.: On the idempotent graph of a ring.J. Algebra Appl. 12 (2013), Article ID 1350003, 14 pages. Zbl 1266.05051, MR 3063442, 10.1142/S0219498813500035
Reference: [3] Anderson, D. F., Badawi, A.: Von Neumann regular and related elements in commutative rings.Algebra Colloq. 19 (2012), 1017-1040. Zbl 1294.13029, MR 3073393, 10.1142/S1005386712000831
Reference: [4] Anderson, D. F., LaGrange, J. D.: Abian's poset and the ordered monoid of annihilator classes in a reduced commutative rings.J. Algebra Appl. 13 (2014), Article ID 1450070, 18 pages. Zbl 1317.06020, MR 3225137, 10.1142/S0219498814500704
Reference: [5] Anderson, D. D., Naseer, M.: Beck's coloring of a commutative ring.J. Algebra 159 (1993), 500-514. Zbl 0798.05067, MR 1231228, 10.1006/jabr.1993.1171
Reference: [6] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [7] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.Ann. Math. (2) 164 (2006), 51-229. Zbl 1112.05042, MR 2233847, 10.4007/annals.2006.164.51
Reference: [8] Cvetko-Vah, K., Dolžan, D.: Indecomposability graphs of rings.Bull. Aust. Math. Soc. 77 (2008), 151-159. Zbl 1194.16034, MR 2411874, 10.1017/S0004972708000154
Reference: [9] Han, J., Park, S.: Additive set of idempotents in rings.Commun. Algebra 40 (2012), 3551-3557. Zbl 1256.16024, MR 2981152, 10.1080/00927872.2011.591862
Reference: [10] Patil, A., Momale, P. S.: Idempotent graphs, weak perfectness, and zero-divisor graphs.Soft Comput. 25 (2021), 10083-10088. Zbl 1498.05128, 10.1007/s00500-021-05982-0
Reference: [11] Patil, A., Waphare, B. N., Joshi, V.: Perfect zero-divisor graphs.Discrete Math. 340 (2017), 740-745. Zbl 1355.05115, MR 3603554, 10.1016/j.disc.2016.11.027
Reference: [12] Razaghi, S., Sahebi, S.: A graph with respect to idempotents of a ring.J. Algebra Appl. 20 (2021), Article ID 2150105, 8 pages \99999DOI99999 10.1142/S021949882150105X . Zbl 1496.16037, MR 4256354, 10.1142/S021949882150105X
.

Files

Files Size Format View
MathBohem_150-2025-4_6.pdf 228.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo