Previous |  Up |  Next

Article

Keywords:
BVP on infinite intervals; $\phi $-Laplacian; fixed point theory in cones
Summary:
We are concerned in this paper with the existence of positive solutions to the $\phi $-Laplacian third-order boundary value problem $$ \begin {cases} -(\phi (u''))'(t)=f(t,u(t),u'(t))\text { for a.e. }t\in J, \\ u(0)=0,\ u'(0)=a\text {, }\lim \limits _{t\rightarrow \infty }u''(t)=0, \\ \Delta u(t_{k})=I_{1,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots ,\\ \Delta u'(t_{k})=I_{2,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots , \\ -\Delta \phi (u'')(t_{k})=I_{3,k}(u(t_{k}),u'(t_{k})),\ k=1,2,\ldots ,\end {cases}$$ where $a\geq 0,$ $J=(0,\infty )$, $0<t_{1}<t_{2}<\ldots <t_{k}\ldots $, $t_{k}\rightarrow \infty $ as $k\rightarrow \infty $, $\Delta u(t_{k})=u(t_{k}^{+})-u(t_{k}^{-})$ and $J^{\ast }=J\backslash \{t_{k}\colon k\geq 1\}$. The function $\phi \colon \mathbb {R}\rightarrow \mathbb {R}$ is an increasing homeomorphism such that $\phi (0)=0$, $I_{i,k}\in C(I^{2},[0,\infty ))$ for $i=1,2,3$ and $k\geq 1$, and the nonlinearity $f\colon J^{3}\rightarrow \mathbb {R}^{+}$ is a Caratheodory function.\\ By means of a Guo-Krasnoselskii type fixed point theorem, we prove an existence result for at least one positive solution.
References:
[1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986). DOI 10.1142/0266 | MR 1021979 | Zbl 0619.34019
[2] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (2001). DOI 10.1007/978-94-010-0718-4 | MR 1845855 | Zbl 0988.34002
[3] Benbaziz, Z., Djebali, S.: Positive solutions for nonlinear $\phi$-Laplacian third-order impulsive differential equations on infinite intervals. J. Nonlinear Funct. Anal. 2018 (2018), Article ID 32, 19 pages. DOI 10.23952/jnfa.2018.32
[4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and Its Application 2. Hindawi, New York (2006). DOI 10.1155/9789775945501 | MR 2322133 | Zbl 1130.34003
[5] Bernis, F., Peletier, L. A.: Two problems from draining flows involving third-order ordinary differential equations. SIAM J. Math. Anal. 27 (1996), 515-527. DOI 10.1137/S0036141093260847 | MR 1377486 | Zbl 0845.34033
[6] Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Mathematics in Science and Engineering 104. Academic Press, New York (1973). DOI 10.1016/s0076-5392(08)x6099-0 | MR 0358245 | Zbl 0273.45001
[7] Djebali, S., Saifi, O.: Third order BVPs with $\phi$-Laplacian operators on $[0,+\infty)$. Afr. Diaspora J. Math. 16 (2013), 1-17. MR 3091711 | Zbl 1283.34019
[8] Djebali, S., Saifi, O.: Upper and lower solution for $\phi$-Laplacian third-order BVPs on the half-line. Cubo 16 (2014), 105-116. DOI 10.4067/S0719-06462014000100010 | MR 3185792 | Zbl 1319.34038
[9] Djebali, S., Saifi, O.: Singular $\phi$-Laplacian third-order BVPs with derivative dependence. Arch. Math., Brno 52 (2016), 35-48. DOI 10.5817/AM2016-1-35 | MR 3475111 | Zbl 1374.34067
[10] Greguš, M.: Third Order Linear Differential Equations. Mathematics and Its Applications 22. Reidel, Dordrecht (1987). DOI 10.1007/978-94-009-3715-4 | MR 0882545 | Zbl 0602.34005
[11] Guo, D.: Existence of two positive solutions for a class of third-order impulsive singular integro-differential equations on the half-line in Banach spaces. Bound. Value Probl. 2016 (2016), Article ID 70, 31 pages. DOI 10.1186/s13661-016-0577-8 | MR 3479375 | Zbl 1383.45003
[12] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions. Elsevier, Amsterdam (2016). DOI 10.1016/C2014-0-04797-1 | MR 3430818 | Zbl 1353.34002
[13] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line. Acta Appl. Math. 111 (2010), 27-43. DOI 10.1007/s10440-009-9528-z | MR 2653048 | Zbl 1203.34038
[14] Liu, Y.: Boundary value problem for second order differential equations on unbounded domains. Acta Anal. Funct. Appl. 4 (2002), 211-216 Chinese. MR 1956716 | Zbl 1038.34030
[15] Mil'man, V. D., Myškis, A. D.: On the stability of motion in the presence of impulses. Sib. Math. Zh. 1 (1960), 233-237 Russian. MR 0126028 | Zbl 1358.34022
[16] Minhós, F. M., Carrasco, H.: Higher Order Boundary Value Problems on Unbounded Domains: Types of Solutions, Functional Problems and Applications. Trends in Abstract and Applied Analysis 5. World Scientific, Hackensack (2018). DOI 10.1142/10448 | MR 3752165 | Zbl 1380.34002
[17] Padhi, S., Pati, S.: Theory of Third-Order Differential Equations. Springer, New Delhi (2014). DOI 10.1007/978-81-322-1614-8 | MR 3136420 | Zbl 1308.34002
[18] Wang, J., Zhang, Z.: A boundary value problem from draining and coating flows involving a third-order differential equation. Z. Angew. Math. Phys. 49 (1998), 506-513. DOI 10.1007/s000000050104 | MR 1629561 | Zbl 0907.34016
[19] Yang, X., Liu, Y.: Existence of unbounded solutions of boundary value problems for singular differential systems on whole line. Bound. Value Probl. 2015 (2015), Article ID 42, 39 pages. DOI 10.1186/s13661-015-0300-1 | MR 3315714 | Zbl 1317.34034
[20] Deren, F. Yoruk, Hamal, N. Aykut: Second-order boundary-value problems with integral boundary conditions on the real line. Electron. J. Differ. Equ. 2014 (2014), Article ID 19, 13 pages. MR 3159428 | Zbl 1292.34017
[21] Zhang, X.: Computation of positive solutions for nonlinear impulsive integral boundary value problems with $p$-Laplacian on infinite intervals. Abstr. Appl. Anal. 2013 (2013), Article ID 708281, 13 pages. DOI 10.1155/2013/708281 | MR 3035186 | Zbl 1266.65135
Partner of
EuDML logo