Previous |  Up |  Next

Article

Keywords:
algebraic differential geometry; infinite dimensional manifold; smooth function; vector field; differential form
Summary:
Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space $\Gamma _X$ of any manifold $X$. The name comes from the fact that various elements of the geometry of $\Gamma _X$ are constructed via lifting of the corresponding elements of the geometry of $X$. In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to $X$. In order to define a lifted geometry for a “space”, one dose not need any topology or local coordinate system on the space. As example and application, lifted geometry for spaces of Radon measures on $X$, mappings into $X$, embedded submanifolds of $X$, and tilings on $X$, are considered. The gradient operator in the lifted geometry of Radon measures is considered. Also, the construction of a natural Dirichlet form associated to a random measure is discussed. It is shown that Stokes’ Theorem appears as “differentiability” of “boundary operator” in the lifted geometry of spaces of submanifolds. It is shown that (generalized) action functionals associated with Lagrangian densities on $X$ form the algebra of smooth functions in a specific lifted geometry for the path-space of $X$.
References:
[1] Albeverio, S., Daletskii, A.: $L^2$-Betti numbers of infinite configuration spaces. Publ. Res. Inst. Math. Sci. 42 (2006), 649–682. DOI 10.2977/prims/1166642153 | MR 2266990
[2] Albeverio, S., Daletskii, A., Lytvynov, E.: Laplace operators on differential forms over configuration spaces. J. Geom. Phys. 37 (2001), 15–46. DOI 10.1016/S0393-0440(00)00031-0 | MR 1806439
[3] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Differential geometry of Poisson spaces. C.R. Acad. Sci. Paris 323 (1996), 1129–1134. MR 1423438
[4] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154 (1998), 444–500. DOI 10.1006/jfan.1997.3183 | MR 1612725
[5] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157 (1998), 242–291. DOI 10.1006/jfan.1997.3215 | MR 1637949
[6] Dubois-Violette, M.: Lectures on graded differential algebras and noncommutative geometry. Noncommutative differential geometry and its applications to physics, Springer, Dordrecht, 2001, arXiv:math/9912017 [math.QA], pp. 245–306. MR 1910544
[7] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: An infinite dimensional umbral calculus. J. Funct. Anal. 276 (2019), 3714–3766. DOI 10.1016/j.jfa.2019.03.006 | MR 3957997
[8] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: Stirling operators in spatial combinatorics. J. Funct. Anal. 282 (2022), 45 pp. DOI 10.1016/j.jfa.2021.109285 | MR 4334681
[9] Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam, North-Holland Pub. Company, 1980. MR 0569058
[10] Gracia-Bondia, J.M., Várilly, J.C., Figuerora, H.: Elements of noncommutative geometry. Springer Science & Business Media, New York, 2021. MR 1789831
[11] Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators on the cone of radon measures. J. Funct. Anal. 269 (2015), 2947–2976. DOI 10.1016/j.jfa.2015.06.007 | MR 3394626
[12] Kuchling, P.: Analysis and dynamics on the cone of discrete radon measures. Ph.D. thesis, Bielefeld University, 2019.
[13] Lang, S.: Introduction to differentiable manifolds. Springer Science & Business Media, New York, 2006. MR 1931083
[14] Lee, J.: Introduction to smooth manifolds. Springer, New York, 2013. MR 2954043
[15] Ma, Z.-M., Röckner, M.: Construction of diffusions on configuration spaces. Osaka J. Math. 37 (2000), 273–314. MR 1772834
[16] Michor, P.W.: Gauge theory for fiber bundles. Monographs and Textbooks in Physical Science, Lecture Notes, Bibliopolis, Naples, 1991. MR 1204655
[17] Privault, N.: Connections and curvature in the Riemannian geometry of configuration spaces. J. Funct. Anal. 185 (2001), 376–403. DOI 10.1006/jfan.2001.3768 | MR 1856271
[18] Röckner, M.: Stochastic analysis on configuration spaces: Basic ideas and recent results. New Directions in Dirichlet Forms, Studies in Advanced Mathematics, Providence, RI: American Mathematical Society, 1998, arXiv:math/9803162 [math.PR], pp. 157–231. MR 1652281
Partner of
EuDML logo