Previous |  Up |  Next

Article

Title: On the differential geometry of some classes of infinite dimensional manifolds (English)
Author: Sadr, Maysam Maysami
Author: Amnieh, Danial Bouzarjomehri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 1
Year: 2024
Pages: 1-20
Summary lang: English
.
Category: math
.
Summary: Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space $\Gamma _X$ of any manifold $X$. The name comes from the fact that various elements of the geometry of $\Gamma _X$ are constructed via lifting of the corresponding elements of the geometry of $X$. In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to $X$. In order to define a lifted geometry for a “space”, one dose not need any topology or local coordinate system on the space. As example and application, lifted geometry for spaces of Radon measures on $X$, mappings into $X$, embedded submanifolds of $X$, and tilings on $X$, are considered. The gradient operator in the lifted geometry of Radon measures is considered. Also, the construction of a natural Dirichlet form associated to a random measure is discussed. It is shown that Stokes’ Theorem appears as “differentiability” of “boundary operator” in the lifted geometry of spaces of submanifolds. It is shown that (generalized) action functionals associated with Lagrangian densities on $X$ form the algebra of smooth functions in a specific lifted geometry for the path-space of $X$. (English)
Keyword: algebraic differential geometry
Keyword: infinite dimensional manifold
Keyword: smooth function
Keyword: vector field
Keyword: differential form
MSC: 46T05
MSC: 58B10
MSC: 58B99
MSC: 58D10
MSC: 58D15
DOI: 10.5817/AM2024-1-1
.
Date available: 2024-02-07T14:10:29Z
Last updated: 2024-02-07
Stable URL: http://hdl.handle.net/10338.dmlcz/152022
.
Reference: [1] Albeverio, S., Daletskii, A.: $L^2$-Betti numbers of infinite configuration spaces.Publ. Res. Inst. Math. Sci. 42 (2006), 649–682. MR 2266990, 10.2977/prims/1166642153
Reference: [2] Albeverio, S., Daletskii, A., Lytvynov, E.: Laplace operators on differential forms over configuration spaces.J. Geom. Phys. 37 (2001), 15–46. MR 1806439, 10.1016/S0393-0440(00)00031-0
Reference: [3] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Differential geometry of Poisson spaces.C.R. Acad. Sci. Paris 323 (1996), 1129–1134. MR 1423438
Reference: [4] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces.J. Funct. Anal. 154 (1998), 444–500. MR 1612725, 10.1006/jfan.1997.3183
Reference: [5] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces: The Gibbsian case.J. Funct. Anal. 157 (1998), 242–291. MR 1637949, 10.1006/jfan.1997.3215
Reference: [6] Dubois-Violette, M.: Lectures on graded differential algebras and noncommutative geometry.Noncommutative differential geometry and its applications to physics, Springer, Dordrecht, 2001, arXiv:math/9912017 [math.QA], pp. 245–306. MR 1910544
Reference: [7] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: An infinite dimensional umbral calculus.J. Funct. Anal. 276 (2019), 3714–3766. MR 3957997, 10.1016/j.jfa.2019.03.006
Reference: [8] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: Stirling operators in spatial combinatorics.J. Funct. Anal. 282 (2022), 45 pp. MR 4334681, 10.1016/j.jfa.2021.109285
Reference: [9] Fukushima, M.: Dirichlet forms and Markov processes.Amsterdam, North-Holland Pub. Company, 1980. MR 0569058
Reference: [10] Gracia-Bondia, J.M., Várilly, J.C., Figuerora, H.: Elements of noncommutative geometry.Springer Science & Business Media, New York, 2021. MR 1789831
Reference: [11] Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators on the cone of radon measures.J. Funct. Anal. 269 (2015), 2947–2976. MR 3394626, 10.1016/j.jfa.2015.06.007
Reference: [12] Kuchling, P.: Analysis and dynamics on the cone of discrete radon measures.Ph.D. thesis, Bielefeld University, 2019.
Reference: [13] Lang, S.: Introduction to differentiable manifolds.Springer Science & Business Media, New York, 2006. MR 1931083
Reference: [14] Lee, J.: Introduction to smooth manifolds.Springer, New York, 2013. MR 2954043
Reference: [15] Ma, Z.-M., Röckner, M.: Construction of diffusions on configuration spaces.Osaka J. Math. 37 (2000), 273–314. MR 1772834
Reference: [16] Michor, P.W.: Gauge theory for fiber bundles.Monographs and Textbooks in Physical Science, Lecture Notes, Bibliopolis, Naples, 1991. MR 1204655
Reference: [17] Privault, N.: Connections and curvature in the Riemannian geometry of configuration spaces.J. Funct. Anal. 185 (2001), 376–403. MR 1856271, 10.1006/jfan.2001.3768
Reference: [18] Röckner, M.: Stochastic analysis on configuration spaces: Basic ideas and recent results.New Directions in Dirichlet Forms, Studies in Advanced Mathematics, Providence, RI: American Mathematical Society, 1998, arXiv:math/9803162 [math.PR], pp. 157–231. MR 1652281
.

Files

Files Size Format View
ArchMathRetro_060-2024-1_1.pdf 544.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo