[1] M. Pultar: Solution of evolution equations of hyperbolic type by the method of Rothe. To appear.
[2] K. Rektorys: 
On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czech. Math. J., 21 (96) 1971, 318-339. 
MR 0298237 | 
Zbl 0217.41601[3] J. Kačur A. Wawruch: 
On an approximate solution for quasilinear parabolic equations. Czech. Math. J., 27 (102) 1977, 220-241. 
MR 0605665[4] J. Nečas: 
Application of Rothe's method to abstract parabolic equations. Czech. Math. J., 24 (99), 1974, N-3, 496-500. 
MR 0348571 | 
Zbl 0311.35059[5] I. Bock J. Kačur: 
Application of Rothe's method to parabolic variational inequalities. Math. Slovaca 31, 1981, N-4, 429-436. 
MR 0637970[6] Bubeník F.: To the problems of solution of hyperbolic problems by Rothe's method. (Czech), Praha 1980, Thesis (unpublished).
[7] J. Streiblová: Solution of the hyperbolic problem by Rothe's method. (Czech), Praha 1978, Thesis (unpublished).
[8] J. Nečas: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. 
MR 0227584[9] H. Brezis: 
Operateurs maximaux monotones et semi-groupes de contractions dans espaces de Hilbert. North-Holand, Amsterdam, 1973. 
MR 0348562[11] A. Kufner О. John S. Fučik: Function Spaces. Academia, Prague 1977.
[12] J. L. Lions: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris 1969. 
MR 0259693 | 
Zbl 0189.40603[13] G. Duvaut J. L. Lions: 
Inequalities in Mechanics and Physics. Springer Verlag, 1976. 
MR 0521262