Previous |  Up |  Next


Title: Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities (English)
Author: Kačur, Jozef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 34
Issue: 1
Year: 1984
Pages: 92-106
Summary lang: Russian
Category: math
MSC: 34G20
MSC: 35L75
MSC: 47H99
idZBL: Zbl 0554.35086
idMR: MR731982
DOI: 10.21136/CMJ.1984.101928
Date available: 2008-06-09T14:58:04Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] M. Pultar: Solution of evolution equations of hyperbolic type by the method of Rothe.To appear.
Reference: [2] K. Rektorys: On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables.Czech. Math. J., 21 (96) 1971, 318-339. Zbl 0217.41601, MR 0298237
Reference: [3] J. Kačur A. Wawruch: On an approximate solution for quasilinear parabolic equations.Czech. Math. J., 27 (102) 1977, 220-241. MR 0605665
Reference: [4] J. Nečas: Application of Rothe's method to abstract parabolic equations.Czech. Math. J., 24 (99), 1974, N-3, 496-500. Zbl 0311.35059, MR 0348571
Reference: [5] I. Bock J. Kačur: Application of Rothe's method to parabolic variational inequalities.Math. Slovaca 31, 1981, N-4, 429-436. MR 0637970
Reference: [6] Bubeník F.: To the problems of solution of hyperbolic problems by Rothe's method.(Czech), Praha 1980, Thesis (unpublished).
Reference: [7] J. Streiblová: Solution of the hyperbolic problem by Rothe's method.(Czech), Praha 1978, Thesis (unpublished).
Reference: [8] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [9] H. Brezis: Operateurs maximaux monotones et semi-groupes de contractions dans espaces de Hilbert.North-Holand, Amsterdam, 1973. MR 0348562
Reference: [10] Y. Komura: Nonlinear semigroups in Hilbert spaces.J. Math. Soc. Japan, 19 (1967), 493-507. MR 0216342, 10.2969/jmsj/01940493
Reference: [11] A. Kufner О. John S. Fučik: Function Spaces.Academia, Prague 1977.
Reference: [12] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod-Gauthier-Villars, Paris 1969. Zbl 0189.40603, MR 0259693
Reference: [13] G. Duvaut J. L. Lions: Inequalities in Mechanics and Physics.Springer Verlag, 1976. MR 0521262


Files Size Format View
CzechMathJ_34-1984-1_9.pdf 1.391Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo