| Title:
             | 
On the homology of free Lie algebras (English) | 
| Author:
             | 
Popescu, Calin | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
39 | 
| Issue:
             | 
4 | 
| Year:
             | 
1998 | 
| Pages:
             | 
661-669 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Given a principal ideal domain $R$ of characteristic zero, containing $1/2$, and a connected differential non-negatively graded free finite type $R$-module $V$, we prove that the natural arrow $ \Bbb{L} {F\kern -0.8pt H}(V) \rightarrow {F\kern -0.8pt H} \Bbb{L} (V)$ is an isomorphism of graded Lie algebras over $R$, and deduce thereby that the natural arrow ${U\kern -1pt F\kern -0.8pt H}\Bbb{L} (V) \rightarrow {F\kern -0.8pt H\kern -0.4pt U} \Bbb{L} (V)$ is an isomorphism of graded cocommutative Hopf algebras over $R$; as usual, $F$ stands for free part, $H$ for homology, $\Bbb{L}$ for free Lie algebra, and $U$ for universal enveloping algebra. Related facts and examples are also considered. (English) | 
| Keyword:
             | 
differential graded Lie algebra | 
| Keyword:
             | 
free Lie algebra on a differential graded module | 
| Keyword:
             | 
universal enveloping algebra | 
| MSC:
             | 
17B01 | 
| MSC:
             | 
17B35 | 
| MSC:
             | 
17B55 | 
| MSC:
             | 
17B70 | 
| idZBL:
             | 
Zbl 1059.17503 | 
| idMR:
             | 
MR1715456 | 
| . | 
| Date available:
             | 
2009-01-08T18:47:18Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119042 | 
| . | 
| Reference:
             | 
[1] Anick D.J.: An $R$-local Milnor-Moore theorem.Adv. Math. 77 (1989), 116-136. Zbl 0684.55010, MR 1014074 | 
| Reference:
             | 
[2] Cohen F.R., Moore J.C., Niesendorfer J.A.: Torsion in homotopy groups.Ann. of Math. 109 (1979), 121-168. MR 0519355 | 
| Reference:
             | 
[3] Eilenberg S., Moore J.C.: Homology and fibrations I, Coalgebras, cotensor product and its derived functors.Comment. Math. Helv. 40 (1966), 199-236. Zbl 0148.43203, MR 0203730 | 
| Reference:
             | 
[4] Halperin S.: Universal enveloping algebras and loop space homology.J. Pure Appl. Algebra 83 (1992), 237-282. Zbl 0769.57025, MR 1194839 | 
| Reference:
             | 
[5] Hilton P., Wu Y.-C.: A Course in Modern Algebra (especially Chapter 5, Section 4).John Wiley and Sons, Inc., New York, London, Sydney, Toronto, 1974. MR 0345744 | 
| Reference:
             | 
[6] Jacobson N.: Basic Algebra I (especially Chapter 3).second edition, W.H. Freeman and Co., New York, 1985. MR 0780184 | 
| Reference:
             | 
[7] Milnor J.W., Moore J.C.: On the structure of Hopf algebras.Ann. of Math. 81 (1965), 211-264. Zbl 0163.28202, MR 0174052 | 
| Reference:
             | 
[8] Popescu C.: Non-Isomorphic UHL and HUL.Rapport no. 257, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, February, 1996. | 
| Reference:
             | 
[9] Popescu C.: On UHL and HUL.Rapport no. 267, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, December, 1996; to appear in the Bull. Belgian Math. Soc. Simon Stevin. Zbl 1073.17502, MR 1705144 | 
| Reference:
             | 
[10] Quillen D.G.: Rational homotopy theory.Ann. of Math. 90 (1969), 205-295. Zbl 0191.53702, MR 0258031 | 
| Reference:
             | 
[11] Scheerer H., Tanré D.: The Milnor-Moore theorem in tame homotopy theory.Manuscripta Math. 70 (1991), 227-246. MR 1089059 | 
| Reference:
             | 
[12] Tanré D.: Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan.LNM 1025, Springer-Verlag, Berlin, Heidelberg, New York, 1982. MR 0764769 | 
| . |